Journal of Chemical Ecology

, Volume 38, Issue 10, pp 1318–1339 | Cite as

Scent Chemicals of the Brushtail Possum, Trichosurus vulpecula

  • Stuart McLean
  • Noel W. Davies
  • Natasha L. Wiggins


The common brushtail possum (Trichosurus vulpecula) is the most widespread browsing marsupial in Australia, where it occupies woodland, agricultural, and urban environments. Following its introduction into New Zealand in the 19th century it has become a major feral pest, threatening native forests. The adaptability of the possum is thought to be due in part to its social organization, in which chemical communication is important. Possums have cloacal glands and exhibit related marking behavior. This study sought to characterize the chemicals involved in scent marking. Swabs were taken of the cloacal region of 15 possums (5 females, 10 males) from north-eastern Tasmania and analyzed by gas chromatography–mass spectrometry. There was a large number of compounds present, including 81 branched and unbranched, and saturated and unsaturated, fatty acids (C4–C15) and alcohols (C6–C26); 27 esters of 2,6- and 2,7-dimethyloctanol; 29 esters of formic acid; 39 sulfur compounds including S8 and a series of dialkyl disulfides, trisulfides, and tetrasulfides (C4–C10); and several alkylglycerol ethers. Many of these cloacal compounds are new to biology. There was considerable individual variability in the relative amounts of compounds found, and no evident sex differences, although the study was not designed to test this. This pattern suggests that these compounds may be acting collectively as a signature mixture of semiochemicals, carrying information on the individual, its kinship, and physiological and social status. This is the first detailed description of putative semiochemicals in any marsupial species.


Mammalian chemical signals Brushtail possum Trichosurus vulpecula Invasive vertebrate pest Cloaca Fatty acids Fatty alcohols Decyl esters Formate esters Polysulfides Alkylglycerol ethers 



We thank Stephen Quarrell for assistance with the DMDS derivatization reaction. We are grateful to Kathleen R. Murphy for advice on the feasibility of multivariate regression analysis with this dataset.

Supplementary material

10886_2012_188_MOESM1_ESM.docx (94 kb)
ESM 1 (DOCX 93 kb)


  1. Alberts, A. C. 1992. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139:S62–S89.CrossRefGoogle Scholar
  2. Albone, E. S. 1984. Mammalian Semiochemistry. The Investigation of Chemical Signals Between Mammals. Wiley, Chichester. 360 p.Google Scholar
  3. Beynon, J. H., Saunders, R. A., and Williams, A. E. 1968. The Mass Spectra of Organic Molecules. Elsevier, Amsterdam. 510 p.Google Scholar
  4. Biggins, J. G. 1984. Communications in possums: A review, pp. 35–57, in A. Smith and I. Hume (eds.), Possums and Gliders. Surrey Beatty & Sons, Canberra.Google Scholar
  5. Bolliger, A. and Hardy, M. H. 1944. The sternal integument of Trichosurus vulpecula. Proc. R. Soc. NSW 78:122–133.Google Scholar
  6. Bolliger, A. and Whitten, W. K. 1948. The paracloacal (anal) glands of Trichosurus vulpecula. Proc. R. Soc. NSW 82:36–43.Google Scholar
  7. Boyle, R., McLean, S., and Davies, N. W. 2000. Biotransformation of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). Xenobiotica 30:915–932.PubMedCrossRefGoogle Scholar
  8. Brinck, C., Erlinge, S., and Sandell, M. 1983. Anal gland secretion in mustelids—a comparison. J. Chem. Ecol. 9:727–745.CrossRefGoogle Scholar
  9. Buesching, C. D., Waterhouse, J. S., and Macdonald, D. W. 2002. Gas-chromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles) Part I: Chemical differences related to individual parameters. J. Chem. Ecol. 28:41–56.PubMedCrossRefGoogle Scholar
  10. Burger, B. V. 2005. Mammalian semiochemicals, pp. 231–278, in S. Schulz (ed.) Chemistry of Pheromones and Other Semiochemicals.Google Scholar
  11. Burger, B. V., Tien, F. C., LeRoux, M., and Mo, W. P. 1996. Mammalian exocrine secretions.10. Constituents of preorbital secretion of grysbok, Raphicerus melanotis. J. Chem. Ecol. 22:739–764.CrossRefGoogle Scholar
  12. Burger, B. V., Greyling, J., and Spies, H. S. C. 1999a. Mammalian exocrine secretions. XIV: Constituents of preorbital secretion of steenbok, Raphicerus campestris. J. Chem. Ecol. 25:2099–2108.CrossRefGoogle Scholar
  13. Burger, B. V., Nell, A. E., Spies, H. S. C., Le Roux, M., Bigalke, R. C., and Brand, P. A. J. 1999b. Mammalian exocrine secretions. XII: Constituents of interdigital secretions of bontebok, Damaliscus dorcas dorcas, and blesbok, D. d. phillipsi. J. Chem. Ecol. 25:2057–2084.CrossRefGoogle Scholar
  14. Burger, B. V., Smit, D., Spies, H. S. C., Schmidt, C., Schmidt, U., Telitsina, A. Y., and Grierson, G. R. 2001. Mammalian exocrine secretions XV. Constituents of secretion of ventral gland of male dwarf hamster, Phodopus sungorus sungorus. J. Chem. Ecol. 27:1259–1276.PubMedCrossRefGoogle Scholar
  15. Burger, B. V., Visser, R., Moses, A., and Le Roux, M. 2006. Elemental sulfur identified in urine of cheetah, Acinonyx jubatus. J. Chem. Ecol. 32:1347–1352.PubMedCrossRefGoogle Scholar
  16. Burger, B. V., Viviers, M. Z., Bekker, J. P. I., le Roux, M., Fish, N., Fourie, W. B., and Weibchen, G. 2008. Chemical characterization of territorial marking fluid of male Bengal tiger, Panthera tigris. J. Chem. Ecol. 34:659–671.PubMedCrossRefGoogle Scholar
  17. Carlson, D. A., Roan, C. S., Yost, R. A., and Hector, J. 1989. Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 61:1564–1571.CrossRefGoogle Scholar
  18. Coleman, J. D., Montague, T. L., Eason, C. T., and Statham, H. L. 1997. The Management of Problem Browsing and Grazing Mammals in Tasmania. Browsing Animal Research Council Tasmania.Google Scholar
  19. Cowan, P. E. 2001. Advances in New Zealand mammalogy 1990–2000: Brushtail possum. J. R. Soc. N. Z. 31:15–29.CrossRefGoogle Scholar
  20. Crump, D. R. 1980a. Anal gland secretion of the ferret (Mustela putorius Forma furo). J. Chem. Ecol. 6:837–844.CrossRefGoogle Scholar
  21. Crump, D. R. 1980b. Thietenes and dithiolanes from the anal gland of the stoat (Mustela ermina). J. Chem. Ecol. 6:341–347.CrossRefGoogle Scholar
  22. Crump, D. R. and Moors, P. J. 1985. Anal gland secretions of the stoat (Mustela ermina) and ferret (Mustela putorius Forma furo). Some additional thiotene components. J. Chem. Ecol. 11:1037–1043.CrossRefGoogle Scholar
  23. Day, T., O’Connor, C., and Matthews, L. 2000. Possum social behaviour, pp. 35–46, in T. L. Monague (ed.), The Brushtail Possum: Biology, Impact and Management of an Introduced Marsupial. Manaaki Whenua Press, Lincoln.Google Scholar
  24. Garcia-Rubio, S., Attygalle, A. B., Weldon, P. J., and Meinwald, J. 2002. Reptilian chemistry: Volatile compounds from paracloacal glands of the American crocodile (Crocodylus acutus). J. Chem. Ecol. 28:769–781.PubMedCrossRefGoogle Scholar
  25. Göröcs, N., Mudri, D., Mátyási, J., and Balla, J. 2012. The determination of GC–MS relative molar responses of some n-alkanes and their halogenated analogs. J. Chromatogr. Sci.. doi: 10.1093/chromsci/bms118.
  26. Green, L. M. A. 1963. Distribution and comparative histology of cutaneous glands in certain marsupials. Aust. J. Zool. 11:250–272.CrossRefGoogle Scholar
  27. Green, W. G. 1984. A review of ecological studies relevant to management of the common brushtail possum, pp. 483–498, in A. Smith and I. Hume (eds.), Possums and Gliders. Surrey Beatty & Sons, Canberra.Google Scholar
  28. Gupta, D., Knight, A. R., and Smith, P. J. 1981. Mass spectral studies of symmetrical and unsymmetrical dialkyl disulfides. Can. J. Chem. 59:543–548.CrossRefGoogle Scholar
  29. Harvey, D. J. 1991. Identification and quantification of lipids from rabbit Harderian glands by gas-chromatography mass-spectrometry. Biomed. Chromatogr. 5:143–147.PubMedCrossRefGoogle Scholar
  30. Helsel, D. R. 2005. Insider censoring: Distortion of data with nondetects. Hum. Ecol. Risk Assess. 11:1127–1137.CrossRefGoogle Scholar
  31. Iannitti, T. and Palmieri, B. 2010. An update on the therapeutic role of alkylglycerols. Mar. Drugs 8:2267–2300.PubMedCrossRefGoogle Scholar
  32. Ji, W. H., White, P. C. L., and Clout, M. N. 2005. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 42:595–604.CrossRefGoogle Scholar
  33. Jorgenson, J. W., Novotny, M., Carmack, M., Copland, G. B., Wilson, S. R., Katona, S., and Whitten, W. K. 1978. Chemical scent consituents in the urine of the red fox (Vulpes vulpes L.) during the winter season. Science 199:796–798.PubMedCrossRefGoogle Scholar
  34. Kasama, K., Uezumi, N., and Ito, K. 1970. Characterization and identification of glyceryl ether diesters in Harderian gland tumor of mice. Biochim. Biophys. Acta 202:56–66.PubMedCrossRefGoogle Scholar
  35. Kerle, J. A. 1984. Variation in the ecology of Trichosurus: its adaptive significance, pp. 115–28, in A. Smith and I. Hume (eds.), Possums and Gliders. Surrey Beatty & Sons, Canberra.Google Scholar
  36. Khannoon, E. R., Flachsbarth, B., El-Gendy, A., Mazik, K., Hardege, J. D., and Schulz, S. 2011. New compounds, sexual differences, and age-related variations in the femoral gland secretions of the lacertid lizard Acanthodactylus boskianus. Biochem. Syst. Ecol. 39:95–101.CrossRefGoogle Scholar
  37. Kuo, M. C. and Ho, C. T. 1992. Volatile constituents of the solvent extracts of Welsh onions (Allium fistulosum L. Variety Maichon) and scallions (A. fistulosum L. variety Caespitum). J. Agric. Food Chem 40:1906–1910.CrossRefGoogle Scholar
  38. Lee, S. N., Kim, N. S., and Lee, D. S. 2003. Comparative study of extraction techniques for determination of garlic flavor components by gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 377:749–756.PubMedCrossRefGoogle Scholar
  39. Magnusson, C. D. and Haraldsson, G. G. 2011. Ether lipids. Chem. Phys. Lipids 164:315–340.PubMedCrossRefGoogle Scholar
  40. Martin, S. J. and Drijfhout, F. P. 2009. How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods? J. Chem. Ecol. 35:375–382.PubMedCrossRefGoogle Scholar
  41. McLean, S., Brandon, S., Davies, N. W., Boyle, R., Foley, W. J., Moore, B., and Pass, G. J. 2003. Glucuronuria in the koala. J. Chem. Ecol. 29:1465–1477.PubMedCrossRefGoogle Scholar
  42. Mo, W. P., Burger, B. V., Leroux, M., and Spies, H. S. C. 1995. Mammalian exocrine secretions. IX: Constituents of preorbital secretion of Oribi, Ourebia ourebi. J. Chem. Ecol. 21:1191–1215.CrossRefGoogle Scholar
  43. NIST. 2008. NIST Mass Spectral Search Program Version 2.0f.Google Scholar
  44. Novotny, M. V., Soini, H. A., Koyama, S., Wiesler, D., Bruce, K. E., and Penn, D. J. 2007. Chemical identification of MHC-influenced volatile compounds in mouse urine. I: Quantitative proportions of major chemosignals. J. Chem. Ecol. 33:417–434.PubMedCrossRefGoogle Scholar
  45. Parrott, M. L., Ward, S. J., and Temple-Smith, P. D. 2007. Olfactory cues, genetic relatedness and female mate choice in the agile antechinus (Antechinus agilis). Behav. Ecol. Sociobiol. 61:1075–1079.CrossRefGoogle Scholar
  46. Pino, J. A., Fuentes, V., and Correa, M. T. 2001. Volatile constituents of Chinese chive (Allium tuberosum Rottl. ex Sprengel) and rakkyo (Allium chinense G. Don). J. Agric. Food Chem 49:1328–1330.PubMedCrossRefGoogle Scholar
  47. Salamon, M. 1995. Seasonal, sexual and dietary induced variations in the sternal scent secretion in the brushtail possum (Trichosurus vulpecula), pp. 211–222, in R. Apfelbach, D. MullerSchwarze, K. Reutter, and E. Weiler (eds.), Chemical Signals in Vertebrates VII. Pergamon Press, Oxford.Google Scholar
  48. Salamon, M. and Davies, N. W. 1998. Identification and variation of volatile compounds in sternal gland secretions of male koalas (Phascolarctos cinereus). J. Chem. Ecol. 24:1659–1676.CrossRefGoogle Scholar
  49. Schneider, N. Y., Fletcher, T. P., Shaw, G., and Renfree, M. B. 2008. The vomeronasal organ of the tammar wallaby. J. Anat. 213:93–105.PubMedCrossRefGoogle Scholar
  50. Schultz, T. H., Kruse, S. M., and Flath, R. A. 1985. Some volatile constituents of female dog urine. J. Chem. Ecol. 11:169–75.CrossRefGoogle Scholar
  51. Schultz, T. H., Flath, R. A., Stern, D. J., Mon, T. R., Teranishi, R., Kruse, S. M., Butler, B., and Howard, W. E. 1988. Coyote estrous urine volatiles. J. Chem. Ecol. 14:701–712.CrossRefGoogle Scholar
  52. Schwende, F. J., Wiesler, D., Jorgenson, J. W., Carmack, M., and Novotny, M. 1986. Urinary volatile constituents of the house mouse, Mus musculus, and their endocrine dependency. J. Chem. Ecol. 12:277–296.CrossRefGoogle Scholar
  53. Shalita, A. R. 1974. Genesis of free fatty acids. J. Invest. Dermatol. 62:332–335.PubMedCrossRefGoogle Scholar
  54. Sokolov, V. E., Albone, E. S., Flood, P. F., Heap, P. F., Kagan, M. Z., Vasilieva, V. S., Roznov, V. V., and Zinkevich, E. P. 1980. Secretion and secretory-tissues of the anal sac of the mink, Mustela vison—Chemical and histological studies. J. Chem. Ecol. 6:805–825.CrossRefGoogle Scholar
  55. Spurr, E. B. and Jolly, S. E. 1999. Dominant and subordinate behaviour of captive brushtail possums (Trichosurus vulpecula). N. Z. J. Zool. 26:263–270.CrossRefGoogle Scholar
  56. Stander, M. A., Burger, B. V., and Le Roux, M. 2002. Mammalian exocrine secretions. XVII: Chemical characterization of preorbital secretion of male suni, Neotragus moschatus. J. Chem. Ecol. 28:89–101.PubMedCrossRefGoogle Scholar
  57. Tirindelli, R., Dibattista, M., Pifferi, S., and Menini, A. 2009. From pheromones to behavior. Physiol. Rev. 89:921–956.PubMedCrossRefGoogle Scholar
  58. Tobey, J. R., Nute, T. R., and Bercovitch, F. B. 2009. Age and seasonal changes in the semiochemicals of the sternal gland secretions of male koalas (Phascolarctos cinereus). Aust. J. Zool. 57:111–118.CrossRefGoogle Scholar
  59. Tyndale-Biscoe, H. 2005. Life of Marsupials. CSIRO Publishing, Melbourne.Google Scholar
  60. Walker, P. W., Allen, G. R., Davies, N. W., Smith, J. A., Molesworth, P. P., Nilsson, A., andersson, F., and Hedenstrom, E. 2009. Identification, synthesis and field testing of (3Z,6Z,9Z)-3,6,9-henicosatriene, a second bioactive component of the sex pheromone of the autumn gum moth, Mnesampela privata. J. Chem. Ecol. 35:1411–1422.PubMedCrossRefGoogle Scholar
  61. Waterhouse, J. S., Ke, J., Pickett, J. A., and Weldon, P. J. 1996. Volatile components in dorsal gland secretions of the collared peccary, Tayassu tajacu (Tayassuidae, mammalia). J. Chem. Ecol. 22:1307–1314.CrossRefGoogle Scholar
  62. Weldon, P. J., Flachsbarth, B., and Schulz, S. 2008. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25:738–756.PubMedCrossRefGoogle Scholar
  63. Wheeler, J. W., Vonendt, D. W., and Wemmer, C. 1975. 5-Thiomethylpentane-2,3-dione—unique natural product from striped hyena. J. Am. Chem. Soc. 97:441–442.CrossRefGoogle Scholar
  64. Wood, W. F. 2003. Volatile components in metatarsal glands of sika deer, Cervus nippon. J. Chem. Ecol. 29:2729–2733.PubMedCrossRefGoogle Scholar
  65. Wood, W. F., Sollers, B. G., Dragoo, G. A., and Dragoo, J. W. 2002. Volatile components in defensive spray of the hooded skunk, Mephitis macroura. J. Chem. Ecol. 28:1865–1870.PubMedCrossRefGoogle Scholar
  66. Woolhouse, A. D., Weston, R. J., and Hamilton, B. H. 1994. Analysis of secretions from scent-producing glands of brushtail possum (Trichosurus vulpecula Kerr). J. Chem. Ecol. 20:239–253.CrossRefGoogle Scholar
  67. Wyatt, T. D. 2003. Pheromones and Animal Behaviour: Communication by Smell and Taste. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  68. Wyatt, T. D. 2010. Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J. Comp. Physiol. A 196:685–700.CrossRefGoogle Scholar
  69. Yamazaki, T., Seyama, Y., Otsuka, H., Ogawa, H., and Yamakawa, T. 1981. Identification of alkyldiacylglycerols containing saturated methyl branched chains in Harderian-gland of guinea-pig. J. Biochem. 89:683–691.PubMedGoogle Scholar
  70. Zabaras, R., Richardson, B. J., and Wyllie, S. G. 2005. Evolution in the suite of semiochemicals secreted by the sternal gland of Australian marsupials. Aust. J. Zool. 53:257–263.CrossRefGoogle Scholar
  71. Zhang, J. X., Sun, L. X., Zhang, Z. B., Wang, Z. W., Chen, Y., and Wang, R. 2002. Volatile compounds in anal gland of Siberian weasels (Mustela sibirica) and steppe polecats (M. eversmanni). J. Chem. Ecol. 28:1287–1297.PubMedCrossRefGoogle Scholar
  72. Zhang, J. X., Soini, H. A., Bruce, K. E., Wiesler, D., Woodley, S. K., Baum, M. J., and Novotny, M. V. 2005. Putative chemosignals of the ferret (Mustela furo) associated with individual and gender recognition. Chem. Senses 30:727–737.PubMedCrossRefGoogle Scholar
  73. Zhang, J.-X., Rao, X.-P., Sun, L., Zhao, C.-H., and Qin, X.-W. 2007. Putative chemical signals about sex, individuality, and genetic background in the preputial gland and urine of the house mouse (Mus musculus). Chem. Senses 32:293–303.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stuart McLean
    • 1
  • Noel W. Davies
    • 2
  • Natasha L. Wiggins
    • 3
  1. 1.School of PharmacyUniversity of TasmaniaHobartAustralia
  2. 2.Central Science LaboratoryUniversity of TasmaniaHobartAustralia
  3. 3.School of Plant ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations