Journal of Chemical Ecology

, Volume 38, Issue 9, pp 1105–1115 | Cite as

Defensive Spiroketals from Asceles glaber (Phasmatodea): Absolute Configuration and Effects on Ants and Mosquitoes

  • Aaron T. Dossey
  • John M. Whitaker
  • Maria Cristina A. Dancel
  • Robert K. Vander Meer
  • Ulrich R. Bernier
  • Marco Gottardo
  • William R. Roush
Article

Abstract

Insects are the largest and most diverse group of organisms on earth, with over 1,000,000 species identified to date. Stick insects (“walkingsticks” or “phasmids”, Order Phasmatodea) are known for and name-derived from their camouflage that acts as a primary line of defense from predation. However, many species also possess a potent chemical defense spray. Recently we discovered that the spray of Asceles glaber contains spiroketals [a confirmed major component: (2S,6R)-(−)(E)-2-methyl-1,7-dioxaspiro[5.5]undecane, and a tentatively identified minor component: 2-ethyl-1,6-dioxaspiro[4.5]decane] and glucose. In this paper, we: 1) illustrate the identification of spiroketals and glucose in the defense spray of A. glaber by using Nuclear Magnetic Resonance (NMR), Gas Chromatography/Mass Spectrometry (GC/MS), and comparison with a synthetic reference sample; 2) provide the elucidation of the absolute configuration of the major spiroketal in that defense spray; and 3) demonstrate the effect of this compound and its enantiomer on both fire ants (Solenopsis invicta) and mosquitoes (Aedes aegypti).

Keywords

Spiroketal Phasmatodea Asceles glaber Solenopsis invicta Aedes aegypti Defense Phasmatodea. 

Supplementary material

10886_2012_183_MOESM1_ESM.doc (19.9 mb)
ESM 1(DOC 20333 kb)

References

  1. Barnard, D. R., Bernier, U. R., Xue, R.-D., and Debboun, M. 2007. Chapter 5: Standard methods for testing mosquito repellents, pp. 101–108, in M. Debboun, S. P. Frances, and D. Strickman (eds.), Insect repellents: Principles, methods and uses. CRC Press, Boca Raton.Google Scholar
  2. Bedford, G. O. 1978. Biology and ecology of the phasmatodea. Annu. Rev. Entomol. 23:125–149.CrossRefGoogle Scholar
  3. Bernier, U. R., Kline, D. L., Allan, S. A., and Barnard, D. R. 2007a. Laboratory comparison of Aedes Aegypti attraction to human odors and to synthetic human odor compounds and blends. J. Am. Mosq. Contr. Assoc. 23:288–293.CrossRefGoogle Scholar
  4. Bernier, U. R., Kline, D. L., and Posey, K. H. 2007b. Natural compounds that inhibit mosquito host-finding abilities, pp. 77–100, in M. Debboun, S. P. Frances, and D. Strickman (eds.), Insect Repellents: Principles, methods, and uses. CRC Press, Boca Raton.Google Scholar
  5. Blum, M. S. 1981. pp. 562, Chemical defenses of arthropods. Academic, New York.Google Scholar
  6. Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. of Entomol. 41:353–374.CrossRefGoogle Scholar
  7. Booth, Y. K., Kitching, W., and De Voss, J. J. 2009. Biosynthesis of insect spiroacetals. Nat. Prod. Rep. 26:490–525.PubMedCrossRefGoogle Scholar
  8. Bouchard, P., Hsiung, C. C., and Yaylayan, V. A. 1997. Chemical analysis of defense secretions of Sipyloidea sipylus and their potential use as repellents against rats. J. Chem. Ecol. 23:2049–2057.CrossRefGoogle Scholar
  9. Bradler, S. 2009. Die Phylogenie der Stab- und Gespentschrecken (Insecta: Phasmatodea). Species Phylog. Evol. 2:3–139.Google Scholar
  10. Bragg, P. E. 2001. pp. 772, Phasmids of Borneo. Natural History Publications (Borneo), Kota Kinabalu.Google Scholar
  11. Brock, P. D. 1999. pp. 165, The amazing world of stick and leaf-insects. Amateur Entomologists Society, Feltham.Google Scholar
  12. Brock, P. D. 2009. Phasmida species file online. he Orthopterists’ Society, London. http://Phasmida.SpeciesFile.org.Google Scholar
  13. Brutlag, A. G., Hovda, L. R., and Della Ripa, M. A. 2011. Corneal ulceration in a dog following exposure to the defensive spray of a walkingstick insect (Anisomorpha spp.). J. Vet. Emerg. Crit. Care 21:382–386.CrossRefGoogle Scholar
  14. Carlberg, U. 1985a. Chemical defense in Anisomorpha buprestoides (Houttuyn in Stoll) (Insecta, Phasmida). Zool. Anz. 215:177–188.Google Scholar
  15. Carlberg, U. 1985b. Chemical defense in Extatosoma tiaratum (Macleay) (Insecta, Phasmida). Zool. Anz. 214:185–192.Google Scholar
  16. Carlberg, U. 1986. Chemical defense in Sipyloidea sipylus (Westwood) (Insecta, Phasmida). Zool. Anz. 217:31–38.Google Scholar
  17. Chow, Y. S. and Lin, Y. M. 1986. Actinidine, a defensive secretion of stick insect, Megacrania alpheus Westwood (Orthoptera, Phasmatidae). J. Entomol. Sci. 21:97–101.Google Scholar
  18. Dettner, K., Fettkother, R., Ansteeg, O., Deml, R., Liepert, C., Petersen, B., Haslinger, E., and Francke, W. 1992. Insecticidal fumigants from defensive glands of insects - a fumigant test with adults of Drosophila melanogaster. J. Appl. Ent.-Z. Angewandte Entomologie 113:128–137.Google Scholar
  19. Dossey, A. T. 2010. Insects and their chemical weaponry: new potential for drug discovery. Nat. Prod. Rep. 27:1737–1757.PubMedCrossRefGoogle Scholar
  20. Dossey, A. T. 2011. Chemical defenses of insects: A rich resource for chemical biology in the tropics, pp. 27–57, in J. M. Vivanco and T. Weir (eds.), Chemical biology of the tropics: An interdisciplinary approach. Springer, Heidelberg.Google Scholar
  21. Dossey, A. T., Walse, S. S., Rocca, J. R., and Edison, A. S. 2006. Single insect NMR: a new tool to probe chemical biodiversity. ACS Chem. Biol. 1:511–514.PubMedCrossRefGoogle Scholar
  22. Dossey, A. T., Walse, S. S., Conle, O. V., and Edison, A. S. 2007. Parectadial, a Monoterpenoid from the Defensive Spray of Parectatosoma mocquerysi. J. Nat. Prod. 70:1335–1338.PubMedCrossRefGoogle Scholar
  23. Dossey, A. T., Walse, S. S., and Edison, A. S. 2008. Developmental and geographical variation in the chemical defense of the walkingstick insect Anisomorpha buprestoides. J. Chem. Ecol. 34:584–590.PubMedCrossRefGoogle Scholar
  24. Dossey, A. T., Gottardo, M., Whitaker, J. M., Roush, W. R., and Edison, A. S. 2009. Alkyldimethylpyrazines in the defensive spray of Phyllium westwoodii: a first for order Phasmatodea. J. Chem. Ecol. 35:861–870.PubMedCrossRefGoogle Scholar
  25. Dziezyc, J. 1992. Insect defensive spray-induced keratitis in a dog. J. Am. Vet. Med. Assoc. 200:1969.PubMedGoogle Scholar
  26. Eisner, T. 1965. Defensive spray of a Phasmid insect. Science 148:966.PubMedCrossRefGoogle Scholar
  27. Eisner, T., Morgan, R. C., Attygalle, A. B., Smedley, S. R., Herath, K. B., and Meinwald, J. 1997. Defensive production of quinoline by a phasmid insect (Oreophoetes peruana). J. Exp. Biol. 200:2493–2500.PubMedGoogle Scholar
  28. Eisner, T., Eisner, M., and Siegler, M. 2005. pp. 372, Secret weapons: Defenses of insects, spiders, scorpions, and other many-legged creatures. Mass.: Belknap Press of Harvard University Press, Cambridge.Google Scholar
  29. Francke, W. and Kitching, W. 2001. Spiroacetals in insects. Curr. Org. Chem. 5:233–251.CrossRefGoogle Scholar
  30. Francke, W., Heemann, V., Gerken, B., Renwick, J. A. A., and Vite, J. P. 1977. 2-Ethyl-1,6-Dioxaspiro[4.4]Nonane, Principal Aggregation Pheromone of Pityogenes chalcographus (L). Naturwissenschaften. 64:590–591.CrossRefGoogle Scholar
  31. Ghosh, S. K., Ko, C., Liu, J., Wang, J., and Hsung, R. P. 2006. A ketal-tethered RCM strategy toward the synthesis of spiroketal related natural products. Tetrahedron 62:10485–10496.CrossRefGoogle Scholar
  32. Goubault, M., Batchelor, T. P., Romani, R., Linforth, R. S. T., Fritzsche, M., Francke, W., and Hardy, I. C. W. 2008. Volatile chemical release by bethylid wasps: identity, phylogeny, anatomy and behaviour. Biol. J. Linn. Soc. 94:837–852.CrossRefGoogle Scholar
  33. Günther, K. 1938. Neue und wenig bekannte Phasmoiden aus dem Indian museum, Calcutta. Rec. Indian Mus. 40:123–141.Google Scholar
  34. Ho, H. Y. and Chow, Y. S. 1993. Chemical-identification of defensive secretion of stick insect, Megacrania tsudai Shiraki. J. Chem. Ecol. 19:39–46.CrossRefGoogle Scholar
  35. Katritzky, A. R., Wang, Z. Q., Slavon, S., Dobchev, D. A., Hall, C. D., Tsikolia, M., Bernier, U. R., Elejalde, N. M., Clark, G. G., and Linthicum, K. J. 2010. Novel carboxamides as potential mosquito repellents. J. Med. Ent. 47:924–938.CrossRefGoogle Scholar
  36. Kunert, M., Soe, A., Bartram, S., Discher, S., Tolzin-banasch, K., Nie, L., David, A., Pasteels, J., and Boland, W. 2008. De novo biosynthesis versus sequestration: a network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem. Molec. Biol. 38:895–904.CrossRefGoogle Scholar
  37. Laurent, P., Braekman, J. C., and Daloze, S. 2005. Insect chemical defense, pp. 167–229, in S. Schulz (ed.), Chemistry of pheromones and other Semiochemicals Ii. Springer, Berlin.Google Scholar
  38. Meinwald, J., Chadha, M.S., Hurst, J.J., and Eisner, T. 1962. Defense Mechanisms of Arthropods .9. Anisomorphal, the Secretion of a Phasmid Insect. Tet. Lett. 29–33.Google Scholar
  39. Moore, C. J., Hubener, A., Tu, Y. Q., Kitching, W., Aldrich, J. R., Waite, G. K., Schulz, S., and Francke, W. 1994. A new spiroketal type from the insect Kingdom. J. Org. Chem. 59:6136–6138.CrossRefGoogle Scholar
  40. Neff, S. E. and Eisner, T. 1960. Note on two tachinid parasites of the walking stick, Anisomorpha buprestoides (Stoll). Bull. Brooklyn Ent. Soc. 55:101–103.Google Scholar
  41. Paysse, E. A., Holder, S., and Coats, D. K. 2001. Ocular injury from the venom of the Southern walkingstick. Ophthalmology 108:190–191.PubMedCrossRefGoogle Scholar
  42. Posey, K. H. and Schreck, C. E. 1981. An air-flow Apparatus for selecting female mosquitos for use in repellent and attraction studies. Mosquito News 41:566–568.Google Scholar
  43. Posey, K. H., Barnard, D. R., and Schreck, C. E. 1998. Triple cage olfactometer for evaluating mosquito (Diptera: Culicidae) attraction responses. J. Med. Ent. 35:330–334.Google Scholar
  44. Prescott, T. A. K., Bramham, J., Zompro, O., and Maciver, S. K. 2009. Actinidine and glucose from the defensive secretion of the stick insect Megacrania nigrosulfurea. Biochem. Syst. Ecol. 37:759–760.CrossRefGoogle Scholar
  45. Schmeda-Hirschmann, G. 2006. 4-Methyl-1-hepten-3-one, the defensive compound from Agathemera elegans (Philippi) (Phasmatidae) insecta. Zeitschrift Fur Natur. C - J. Biosci. 61:592–594.Google Scholar
  46. Schneider, C. O. 1934. Las emanaciones del chinchemayo Paradoxomorpha crassa. Rev. Chil. Hist. Nat. 38:44–46.Google Scholar
  47. Schwartz, B. D., Moore, C. J., Rahm, F., Hayes, P. Y., Kitching, W., and De Voss, J. J. 2008. Spiroacetal biosynthesis in insects from Diptera to Hymenoptera: the Giant Ichneumon wasp Megarhyssa nortoni nortoni Cresson. J. Am. Chem. Soc. 130:14853–14860.PubMedCrossRefGoogle Scholar
  48. Scudder, S. H. 1876. Odoriferous glands in Phasmidae. Psyche 1:137–140.CrossRefGoogle Scholar
  49. Sellick, J. 1997. The range of egg capsule morphology within the Phasmatodea and its relevance to the taxonomy of the order. Ital. J. Zool. 64:97–104.CrossRefGoogle Scholar
  50. Smith, R. M., Brophy, J. J., Cavill, G. W. K., and Davies, N. W. 1979. Iridodials and nepetalactone in the defensive secretion of the coconut stick insects, Graeffea crouani. J. Chem. Ecol. 5:727–735.CrossRefGoogle Scholar
  51. Tengö, J., Bergström, G., Borgkarlson, A.-K., Groth, I., and Francke, W. 1982. Volatile compounds from cephalic secretions of females in 2 cleptoparasite bee genera, Epeolus (Hym, Anthophoridae) and Coelioxys (Hym, Megachilidae). Z. Natur. C-a J. of Biosci. 37:376–380.Google Scholar
  52. Tilgner, E. H. 2002. Systematics of phasmida. PhD Dissertation. University of Georgia, Athens.Google Scholar
  53. Tilgner, E. H. and Mchugh, J. V. 1999. First record of parasitism of Manomera tenuescens (Phasmida: Heteroemiidae) by Phasmophaga antennalis (Diptera: Tachinidae). Entomol. News 110:151–152.Google Scholar
  54. Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., Livny, M., Mading, S., Maziuk, D., Miller, Z., Nakatani, E., Schulte, C. F., Tolmie, D. E., Kent Wenger, R., Yao, H., and Markley, J. L. 2008. BioMagResBank. Nuc. Acids Res. 36:D402–D408.CrossRefGoogle Scholar
  55. Vander Meer, R. K., Glancey, B. M., Lofgren, C. S., Glover, A., Tumlinson, J. H., and Rocca, J. 1980. The poison sac of red imported fire ant queens - source of a pheromone attractant hymenoptera. Formicidae. Ann. Ent. Soc. Am. 73:609–612.Google Scholar
  56. Vander Meer, R. K., Alvarez, F., and Lofgren, C. S. 1988. Isolation of the trail recruitment pheromone of Solenopsis invicta. J. Chem. Ecol. 14:825–838.CrossRefGoogle Scholar
  57. Vander Meer, R.K., Banks, W.A., and Lofgren, C.S. December 24, 1996. Repellents for ants. Patent # 5,587,401.Google Scholar
  58. Weldon, P. J., Carroll, J. F., Kramer, M., Bedoukian, R. H., Coleman, R. E., and Bernier, U. R. 2011. Anointing chemicals and hematophagous arthropods: responses by ticks and mosquitoes to Citrus (Rutaceae) peel exudates and monoterpene components. J. Chem. Ecol. 37:348–359.PubMedCrossRefGoogle Scholar
  59. Weston, R. J., Woolhouse, A. D., Spurr, E. B., Harris, R. J., and Suckling, D. M. 1997. Spiroacetals and other venom constituents as potential wasp attractants. J. Chem. Ecol. 23:553–568.CrossRefGoogle Scholar
  60. Whitaker, J. M. 2012. pp. 41–52, Studies towards the synthesis of Sporolides A and B and other synthetic efforts. PhD Dissertation. Scripps Research Institute, Jupiter.Google Scholar
  61. Zhang, H. S., Fletcher, M. T., Dettner, K., Francke, W., and Kitching, W. 1999. Synthesis and absolute stereochemistry of spiroacetals in rove beetles (Coleoptera: Staphylinidae). Tetrahedron. Lett. 40:7851–7854.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aaron T. Dossey
    • 1
  • John M. Whitaker
    • 2
  • Maria Cristina A. Dancel
    • 3
  • Robert K. Vander Meer
    • 4
  • Ulrich R. Bernier
    • 5
  • Marco Gottardo
    • 6
  • William R. Roush
    • 2
  1. 1.All Things BugsGainesvilleUSA
  2. 2.Department of ChemistryScripps FloridaJupiterUSA
  3. 3.Mass Spectrometry Facility, Department of ChemistryUniversity of FloridaGainesvilleUSA
  4. 4.Imported Fire Ant and Household Insects (IFAHI) research unit, Center for Medical, Agricultural, and Veterinary EntomologyARS/USDAGainesvilleUSA
  5. 5.Mosquito & Fly Research Unit, Center for Medical, Agricultural, and Veterinary EntomologyARS/USDAGainesvilleUSA
  6. 6.Department of Evolutionary BiologyUniversity of SienaSienaItaly

Personalised recommendations