Abstract
Four trienyl hydrocarbons, (Z3, Z6, Z9)-tricosatriene (Z3, Z6, Z9-23:HC), (Z3, Z6, Z9)-pentacosatriene (Z3, Z6, Z9-25:HC), (Z3, Z6, Z9)-heptacosatriene (Z3, Z6, Z9-27:HC), and (Z3, Z6, Z9)-nonacosatriene (Z3, Z6, Z9-29:HC) were identified in a non-polar fraction of the body wax of male and female yellow peach moth, Conogethes punctiferalis. The relative amounts and ratios of these hydrocarbons differed between sexes. In females, the ratios in body wax and pheromone gland extracts were similar, with lesser amounts found in gland extracts. Synergistic effects of these hydrocarbons when added to the known aldehyde pheromone components were assessed in wind tunnel tests. A blend of (E)-10-hexadecenal (E10-16: Ald) and (Z)-10-hexadecenal (Z10-16: Ald) elicited upwind flight and orientation of males to the pheromone source, but arriving males did not remain close to source for very long. Among the hydrocarbons identified, only Z3, Z6, Z9-23:HC enhanced the activity of the aldehyde blend by increasing the time spent close to the source and the number of source contacts. Z3, Z6, Z9-23:HC and (Z9)-heptacosene (Z9-27:HC) also increased close-range responses to the aldehyde blend. The activity of the aldehyde blend plus these two hydrocarbons was similar to that of crude pheromone extract. Positive dose-response relationships between the aldehyde blend and two hydrocarbon mixtures were found. The lowest doses that elicited synergism were 10−1 female equivalents (of body wax extracts) for the two hydrocarbons, and 10−2 female equivalents for the total unsaturated hydrocarbon mixture.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ando, T., Inomata, S., and Yamamoto, M. 2004. Lepidopteran sex pheromones. Topics Curr. Chem. 239:51–96.
Ando, T., Kawai, T., and Matsuoka, K. 2008. Epoxyalkenyl sex pheromones produced by female moths in highly evolved groups: biosynthesis and its endocrine regulation. J. Pestic. Sci. 33:17–20.
Cabrera, A., Eiras, A. E., Gries, G., Gries, R., Urdaneta, N., Mirás, B., Badji, C., and Jaffe, K. 2001. Sex pheromone of tomato fruit borer, Neoleucinodes elegantalis. J. Chem. Ecol. 27:2097–2107.
Cardé, R. T. and Haynes, K. F. 2004. Structure of the pheromone communication channels in moths, pp. 283–332, in R. T. Cardé and J. G. Millar (eds.), Advances in Insect Chemical Ecology. Cambridge University Press, New York.
Carroll, K. K. 1961. Separation of lipid classes by chromatography on florisil. J. Lipid Res. 2:135–141.
Conner, W. E., Eisner, T., van der Meer, R. K., Guerrero, A., Ghiringelli, D., and Meinwald, J. 1980. Sex attractant of an arctiid moth (Utetheisa ornatrix): a pulsed chemical signal. Behav. Ecol. Sociobiol. 7:55–63.
Gibb, A. R., Pinese, B., Tenakanai, D., Kawi, A. P., Bunn, B., Ramankutty, P., and Suckling, D. M. 2007. (Z)-11-Hexadecenal and (3Z, 6Z, 9Z)-tricosatriene: sex pheromone components of the red banded mango caterpillar Deanolis sublimbalis. J. Chem. Ecol. 33:579–589.
Grant, G. G., Frech, D., Macdonald, L., Slessor, K. N., and King, G. G. S. 1987. Copulation releaser pheromone in body scales of female whitemarked tussock moth, Orgyia leucostigma (Lepidoptera: Lymantriidae): identification and behavioral role. J. Chem. Ecol. 13:345–356.
Honda, H., Kaneko, J., Konno, Y., and Matsumoto, Y. 1979. A simple method for mass-rearing of the yellow peach moth, Dichocrosis punctiferalis Guenée (Lepidoptera: Pyralidae), on an artificial diet. Appl. Entomol. Zool. 14:464–468.
Howard, R. W. 1993. Cuticular hydrocarbons and chemical communication, pp. 179–226, in D. W. Stanley-Samuelson and D. R. Nelson (eds.), Insect Lipids—Chemistry. Biochemistry & Biology. Univ. Nebraska Press, Lincoln and London.
Howard, R. W. and Blomquist, G. J. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–393.
Jung, J. K., Han, K. S., Choi, K. S., and Boo, K. S. 2000. Sex pheromone composition for field-trapping of Dichocrocis punctiferalis (Lepidoptera: Pyralidae) males. Korean J. Appl. Entomol. 39:105–110.
Kimura, T. 2002. Chemical Ecology of Sex Pheromones in Conogethes Sibling Species. PhD dissertation. University of Tsukuba, Tsukuba.
Kondo, A., Nagata, K., and Mochizuki, F. 2008. Geographical differences in pheromone trap performance in the yellow peach moth, Conogethes punctiferalis (Guenée) (Lepidpptera: Pyralidae) occurring in Japanese peach orchards. Jpn. J. Appl. Entomol. Zool. Chugoku Branch. 50:35–38.
Konno, Y., Arai, K., Sekiguchi, K., and Matsumoto, Y. 1982. (E)-10-Hexadecenal, a sex pheromone component of the yellow peach moth, Dichocrocis punctiferalis Guenée (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 17:207–217.
Liimatainen, J. O. and Jalon, J.-M. 2007. Genetic analysis of cuticular hydrocarbons and their effect on courtship in Drosophila virilis and D. lummei. Behav. Genet. 37:713–725.
Liu, M. Y., Tian, Y., and Li, Y. X. 1994. Identification of minor components of the sex pheromone of yellow peach moth, Dichocrocis punctiferalis Guenée, and field trials. Entomol. Sin. 1:150–155.
Marican, C., Duportets, L., Birman, S., and Jallon, J. M. 2004. Female-specific regulation of cuticular hydrocarbon biosynthesis by dopamine in Drosophila melanogaster. Insect Biochem. Molec. 34:823–830.
Matsuoka, K., Tabunoki, H., Kawai, T., Ishikawa, S., Yamamoto, M., Sato, R., and Ando, T. 2006. Transport of a hydrophobic biosynthetic precursor by lipophorin in the hemolymph of a geometrid female moth which secretes an epoxyalkenyl sex pheromone. Insect Biochem. Mol. Biol. 36:576–583.
Mazor, M. and Dunkelblum, E. 1992. Role of sex pheromone components in behavioral reproductive isolation between Autographa gamma (L.) and either Trichoplusia ni (Hübner) or Chrysodeixis chalcites (Esp.) (Lepidoptera: Noctuidae: Plusiinae). J. Chem. Ecol. 18:2373–2384.
Millar, J. G. 2000. Polyene hydrocarbons and epoxides: second major class of lepidopteran sex attractant pheromones. Annu. Rev. Entomol. 45:575–604.
Millar, J. G., Grant, G. G., Mcelfresh, J. S., Strong, W., Rudolph, C., Stein, J. D., and Moreira, J. A. 2005. (3Z,6Z,9Z,12Z,15Z)-Pentacosapentaene, a key pheromone component of the fir coneworm moth, Dioryctria abietivorella. J. Chem. Ecol. 31:1229–1234.
Ono, T. 1977. The scales as a releaser of the copulation attempt in Lepidoptera. Naturwissenschaften 64:386–387.
Percy-Cunningham, J. E. and Macdonald, J. A. 1987. Biology and ultrastructure of sex pheromone-producing cells, pp. 27–75, in G. D. Prestwich and G. J. Blomquist (eds.), Pheromone Biochemistry. Academic, Orando.
R Development Core Team. 2009. R is a language and environment for statistical computing and graphics. R Foundation for Statistical Computing, Vienna, Austria <http://www.r-project.org>.
Rutowski, R. L. 1978. The courtship behaviour of the small sulphur butterfly, Eurema lisa (Lepidoptera: Pieridae). Anim. Behav. 26:892–903.
Schal, C., Sevala, V. L., and Cardé, R. T. 1998. Novel and highly specific transport of a volatile sex pheromone by hemolymph lipophorin in moths. Naturwissenschaften 85:339–342.
Schlamp, K. K., Gries, R., Khaskin, G., Brown, K., Khaskin, E., Judd, G. J. R., and Gries, G. 2005. Pheromone components from body scales of female Anarsia lineatella induce contacts by conspecific males. J. Chem. Ecol. 31:2897–2911.
Sekiguchi, K. 1974. Morphology, biology and control of the yellow peach moth, Dichocrosis punctiferalis Guenée (Lepidoptera: Pyralidae). Bull. Ibaraki Hort. Expt. Stn. Special Issue (in Japanese with English summery). 89.
Shimizu, K. and Tamaki, Y. 1980. Releasers of male copulatory attempt in the smaller tea tortrix moth (Lepidoptera: Tortricidae). Appl. Entomol. Zool. 15:140–150.
Strong, W. B., Millar, J. G., Grant, G. G., Moreira, J. A., Chong, J. M., and Rudolph, C. 2008. Optimization of pheromone lure and trap design for monitoring the fir coneworm, Dioryctria abietivorella. Entomol. Exp. Appl. 126:67–77.
Underhill, E. W., Palaniswamy, P., Abrams, S. R., Bailey, B. K., Steck, W. F., and Chisholm, M. D. 1983. Triunsaturated hydrocarbons, sex pheromone components of Caenurgina erechtea. J. Chem. Ecol. 9:1413–1423.
Waterhouse, D. F. 1993. pp. 141, The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia: Distribution, Importance and Origin. ACIAR Monograph No. 21, Camberra.
Wei, W., Yamamoto, M., Asato, T., Fujii, T., Pu, G. Q., and Ando, T. 2004. Selectivity and neuroendocrine regulation of the precursor uptake by pheromone glands from hemolymph in geometrid female moths, which secrete epoxyalkenyl sex pheromones. Insect Biochem. Mol. Biol 34:1215–1224.
Xiao, W. and Honda, H. 2010. Non-polar body waxes enhance sex pheromone activity in the yellow peach moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae). Appl. Entomol. Zool. 45:449–456.
Xiao, W., Honda, H., and Matsuyama, S. 2011. Monoenyl hydrocarbons in female body wax of the yellow peach moth as synergists of aldehyde pheromone components. Appl. Entomol. Zool. 46:239–246.
Acknowledgements
We thank Shin-Etsu Chemical Co. Ltd. for providing E10-16: Ald and Z10-16: Ald. We also express our thanks to Prof. DeMar Taylor for reading the manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xiao, W., Matsuyama, S., Ando, T. et al. Unsaturated Cuticular Hydrocarbons Synergize Responses to Sex Attractant Pheromone in the Yellow Peach Moth, Conogethes punctiferalis . J Chem Ecol 38, 1143–1150 (2012). https://doi.org/10.1007/s10886-012-0176-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-012-0176-9


