Skip to main content
Log in

Induction of Chlamydospore Formation in Fusarium by Cyclic Lipopeptide Antibiotics from Bacillus subtilis C2

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The culture filtrate of Bacillus subtilis strain C2 showed strong activity against the pathogenic fungus Fusarium solani f. sp. radicicola. A partially purified fraction (PPF) from the extract induced chlamydospore formation in Fusarium. Reverse-phase high performance liquid chromatography yielded 8 different fractions, six of which had chlamydospore-inducing activity. Mass spectrometry and nuclear magnetic resonance analyses identified the main active constituent as C17 fengycin A (FA17), a cyclic lipopeptide. The effect of FA17 on morphology and physiology of two Fusarium species was dependent on the lipopeptide concentration. When challenged with FA17 at concentrations (0.5, 8, 64 μg ml−1) below the minimum inhibitory concentration (MIC) (128 μg ml−1), two species of Fusarium formed chlamydospores from hyphae, germ tubes, or inside the conidia within 2 days. At concentrations close to the MIC, FA17 caused Fusarium to form sparse and swollen hyphae or lysed conidia. The other five fractions were identified as fengycin A homologues. The homologues could also induce chlamydospore-like structures in 17 species of filamentous fungi including some specimens that do not normally produce chlamydospores, according to their taxonomic descriptions. Like other chlamydospores, these structures contained nuclei and lipid bodies as revealed by DAPI and Nile Red staining, and could germinate. This is the first study to demonstrate that under laboratory conditions fengycin, an antifungal lipopeptide produced by B. subtilis, can induce chlamydospore formation in Fusarium and chlamydospore-like structures in many filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLST, a new generation of protein database search programs. Nucl. Acids Res. 25:3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. App. Environ. Microbiol. 62:4081–4085.

    CAS  Google Scholar 

  • Bie, X. M., Lu, Z. X., and Lu, F. X. 2009. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Meth. 79:272–278.

    Article  CAS  Google Scholar 

  • de Boer, W., Folman, L. B., Summerbell, R. C., and Boddy, L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29:795–811.

    Article  PubMed  Google Scholar 

  • Chan, Y. K., McCormick, W. A., and Seifert, K. A. 2003. Characterization of an antifungal soil bacterium and its antagonistic activities against Fusarium species. Can. J. Microbiol. 49:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Cobas, C., Cruces, J., and Sardina, F. J. 2000. MestRe-C version 2.3, Universidad de Santiago de Compostela, Spain.

  • Couteaudier, Y. and Alabouvette, C. 1990. Survival and inoculum potential of conidia and chlamydospores of Fusarium oxysporum f. sp. lini in soil. Can. J. Microbiol. 36:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Goh, Y. K., Daida, P., and Vujanovic, V. 2009. Effects of abiotic factors and biocontrol agents on chlamydospore formation in Fusarium graminearum and Fusarium sporotrichioides. Biocontrol Sci. Techn. 19:151–167.

    Article  Google Scholar 

  • Harish, S., Manjula, K., and Podile, A. R. 1998. Fusarium udum is resistant to the mycolytic activity of biocontrol strain of Bacillus Subtilis AF 1. FEMS Microbiol. Ecol. 25:385–390.

    Article  CAS  Google Scholar 

  • Jensen, C. D. E., Percich, J. A., and Graham, P. H. 2002. Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crop Res 74:107–115.

    Article  Google Scholar 

  • Kinsella, K., Schilthess, C. P., Morris, T. F., and Stuart, J. D. 2009. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol. Biochem. 41:374–379.

    Article  CAS  Google Scholar 

  • Kloepper, J. W., Lifshitz, R., and Zablotowicz, M. 1989. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39–44.

    Article  Google Scholar 

  • Krieg, N. R. and Holt, J. G. 1984. pp. 1104–1139, Bergey’s manual of systematic bacteriology, Vol. 1. Williams and Wilkins, Baltimore, Md.

    Google Scholar 

  • Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115–175, in E. Stackebrandt and M. Goodfellow (eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.

    Google Scholar 

  • Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Mannual. Blackwell Publishing, USA.

    Book  Google Scholar 

  • Li, L., Qu, Q., Tian, B. Y., and Zhang, K. Q. 2005. Induction of chlamydospores in Trichoderma harzianum and Glioladium roseum by antifungal compounds produced by Bacillus subtilis C2. J. Phytopathol. 153:868–693.

    Article  Google Scholar 

  • Lin, X. R. and Heitman, J. 2005. Chlamydospore formation during hyphal growth in Cryptococcus neoformans. Eukaryot. Cell 4:1746–1754.

    Article  PubMed  CAS  Google Scholar 

  • Luo, W. F., Yu, S. F., He, C. F., Li, Z. Y., Wang, C. L., and Cui, X. M. 1997. On the combined infection of root rot pathogens on Panax Notoginseng. Acta Phytopathol. Sinica 27:85–91.

    Google Scholar 

  • Nash, S. M., Christou, T., and Snyder, W. C. 1961. Existence of Fusarium solani f. phaseoli as chlamydospores in soil. Phytopathology 51:308–312.

    Google Scholar 

  • Nelson, P. E., Dignani, M. C., and Anaissie, E. J. 1994. Taxonomy, biology, and clinical aspects of Fusarium species. Clin. Microbiol. Rev. 7:479–504.

    PubMed  CAS  Google Scholar 

  • Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U., and Sørensen, J. 2000. Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. App. Microbiol. 89:992–1001.

    Article  CAS  Google Scholar 

  • Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084–1090.

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers, J. M., Brujin, I. D., Nybroe, O., and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037–1062.

    PubMed  CAS  Google Scholar 

  • Radford, S. A., Johnson, E. M., and Warnock, D. W. 1997. In vitro studies of activity of voriconazole (UK-109,496), a new triazole antifungal agent, against emerging and less-common mold pathogens. Antimicrob. Agents Chemother. 41:841–843.

    PubMed  CAS  Google Scholar 

  • Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., and Pérez-García, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant Microbe. 20:430–440.

    Article  CAS  Google Scholar 

  • Stevenson, I. L. and Becker, S. A. W. E. 1972. The fine structure and development of chlamydospores of Fusarium oxysporum. Can. J. Microbiol. 18:997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, H., Aoyagi, T., Nishikiori, T., Okuyama, A., Yamagishi, Y., Hamada, M., and Takeuchi, T. 1986. Plipastatins: New inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. J. Antibiot. 39:737–744.

    Article  PubMed  CAS  Google Scholar 

  • Vanittanakom, N. P. and Loeffler, W. 1986. Fengycin – A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39:888–901.

    Article  PubMed  CAS  Google Scholar 

  • Volpon, L., Besson, F., and Lancelin, J. M. 2000. NMR structure of antibiosis plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS Lett. 485:76–80.

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich, K. 1986. NMR of Proteins and Nucleic Acids. Wiley Interscience, New York.

    Google Scholar 

Download references

Acknowledgments

This work was performed with financial support from the Natural Science Foundation of China under the Grant no. 21162036, 20762014, 30960007, 50761007, 51161025, the Natural Science Foundation of Yunnan province under the Grant no. 2006E0008Q and Major state Basic Research Development Program (2009CB125905). We are grateful to Dr. J-P Xu (McMaster University, Canada) for his critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

1H-NMR resonance assignments of fengycin A in DMSO solution at 295 K (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Ma, M., Huang, R. et al. Induction of Chlamydospore Formation in Fusarium by Cyclic Lipopeptide Antibiotics from Bacillus subtilis C2. J Chem Ecol 38, 966–974 (2012). https://doi.org/10.1007/s10886-012-0171-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0171-1

Keywords

Navigation