Journal of Chemical Ecology

, Volume 38, Issue 6, pp 728–745 | Cite as

Ant Interactions with Soil Organisms and Associated Semiochemicals

  • Robert Vander MeerEmail author
Review Article


This review focuses on the semiochemical interactions between ants and their soil environment. Ants occupy virtually every ecological niche and have evolved mechanisms to not just cope with, but also manipulate soil organisms. The metapleural gland, specific to ants was thought to be the major source of semiochemical antimicrobial compounds targeting general or specific deleterious microbes. The extremely diverse variety of semiochemicals and their sources with antimicrobial activity or potential activity is highlighted. The leaf-cutting ants and fire ant provide the most researched species, in part because they cause significant economic damage. The leaf-cutting ant is particularly interesting because researchers have uncovered unexpected interactions between leaf-cutting ant fungal farm, parasitic fungi, bacteria, yeasts, and ant defensive semiochemicals. These complex relationships highlight the multidimensional aspects of ants and the soil environment in which they live.


Formicidae Microbes Fungi Bacteria Yeast Parasite Semiochemical Defense 



I thank Johan Billen and Tappey Jones for their invaluable support on this project, and John Romeo provided the positive atmosphere needed to get this far. The three reviewers provided insightful comments that have improved the manuscript.


  1. Abdulina, G. A., Gazaliev, A. M., Baikenova, G. G., Fazylov, S. D., and Kudaibergenova, S. Z. 2002. A comparative study of the antimicrobial and fungicidal activity of anabasine hydrochloride and dialkylthiophosphates. Pharm. Chem. J. 36:119–120.Google Scholar
  2. Adams, E. S. and Traniello, J. F. A. 1981. Chemical interference competition by Monomorium minimum (Hymenoptera: Formicidae). Oecologia 51:265–270.Google Scholar
  3. Adams, R. M. M., Jones, T. H., Jeter, A. W., de Fine Licht, H. H., Schultz, T. R., and Nash, T. R. 2012. A comparative study of exocrine gland chemistry in Trachymyrmex and Sericomyrmex fungus-growing ants. Biochem. Syst. Ecol. 40:91–97.Google Scholar
  4. Attygalle, A. B., Kern, F., Huang, Q., and Meinwald, J. 1998. Trail pheromone of the myrmicine ant Aphaenogaster rudis (Hymenoptera: Formicidae). Naturwissenschaften 85:38–41.PubMedGoogle Scholar
  5. Attygalle, A. B., Siegel, B., Vostrowsky, O., Bestmann, H. J., and Maschwitz, U. 1989. Chemical composition and function of metapleural gland secretion of the ant Crematogaster deformis Smith (Hymenoptera: Myrmicinae). J. Chem. Ecol. 15:317–328.Google Scholar
  6. Ayer, W. A., Browne, L. M., and Lovell, S. H. 1983. Biologically active phenolic metabolites of a Verticicladiella species. Phytochemistry 22:2267–2271.Google Scholar
  7. Bacos, D., Basselier, J. J., Celerier, J. P., Lange, C., Marx, E., Lhommet, G., Escoubas, P., Lemaire, M., and Clément, J. L. 1988. Ant venom alkaloids from Monomorium species: natural insecticides. Tetrahedron Lett. 29:3061–3064.Google Scholar
  8. Baer, H., Liu, T. Y., anderson, M. C., Blum, M., Schmid, W. H., and James, F. J. 1979. Protein components of fire ant venom (Solenopsis invicta). Toxicon 17:397–405.PubMedGoogle Scholar
  9. Bakuridze, A. D., Dargaeva, T. D., Nicolaeva, A. V., Patudin, A. V., and Brutko, L. I. 1987. Iridoids of plants of the genus Gentiana from the family Gentianaceae. Khim. Prirodnikh. Soedin.:3–11.Google Scholar
  10. Banks, W. A. and Williams, D. F. 1989. Competitive displacement of Paratrechina longicornis (Latreille) (Hymenoptera: Formicidae) from baits by fire ants in Mato Grosso, Brazil. J. Entomol. Sci. 24:381–391.Google Scholar
  11. Barke, J., Seipke, R. F., Gruschow, S., Heavens, D., Drou, N., Bibb, M. J., Goss, R. J. M., Yu, D. W., and Hutchings, M. I. 2010. A mixed community of Actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex Octospinosus. BMC Biol. 8(109):10.Google Scholar
  12. Barke, J., Seipke, R. F., Yu, D. W., and Hutchings, M. I. 2011. A mutualistic microbiome: how do fungus-growing ants select their antibiotic-producing bacteria? Commun. Integr. Biol. 4:41–43.PubMedGoogle Scholar
  13. Beattie, A. J., Turnbull, C., Knox, R. B., and Williams, E. G. 1984. Ant inhibition of pollen function: a possible reason why ant pollination is rare. Am. J. Bot. 71:421–426.Google Scholar
  14. BILLEN, J. 2009a. Diversity and morphology of exocrine glands in ants. Annals XIX Symposium of Myrmecology, Ouro Preto, Brazil Lectures Part 2:1–6.Google Scholar
  15. Billen, J. 2009. Occurrence and structural organization of the exocrine glands in the legs of ants. Arthropod Struct. Dev. 38:2–15.PubMedGoogle Scholar
  16. Billen, J., Hashim, R., and Ito, F. 2011. Functional morphology of the metapleural gland in workers of the ant Crematogaster inflata (Hymenoptera, Formicidae). Invertebr. Biol. 130(3):277–281.Google Scholar
  17. Blanchette, R. A. and Shaw, C. G. 1978. Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology 68:631–637.Google Scholar
  18. Blum, M. S. 1984. Poisonous ants and their venoms, pp. 225–242, in A. T. Tu (ed.), Insect poisons, allergens, and other invertebrate venoms. M. Dekker, New York.Google Scholar
  19. Blum, M. S. 1996. Semiochemical parsimony in the Arthropoda. Annu. Rev. Entomol. 41:353–374.PubMedGoogle Scholar
  20. Blum, M. S., Jones, T. H., Hölldobler, B., Fales, H. M., and Jaouni, T. 1980. Alkaloidal venom mace: offensive use by a thief ant. Naturwissenschaften 67:144–145.Google Scholar
  21. Blum, M. S., Padovani, F., and Amante, E. 1968. Alkanones and terpenes in the mandibular glands of Atta species (Hymenoptera: Formicidae). Comp. Biochem. Physiol. 26:291–299.Google Scholar
  22. Blum, M. S., Walker, J. R., Callahan, P. S., and Novak, A. F. 1958. Chemical, insecticidal, and antibiotic properties of fire venom. Science 128:306–307.PubMedGoogle Scholar
  23. Bolton, B. 2012. Bolton World Catalog Ants.
  24. Brand, J. M. 1978. Fire ant venom alkaloids: their contribution to chemosystematics and biochemical evolution. Biochem. Syst. Ecol. 6:337–340.Google Scholar
  25. Brand, J. M., Blum, M. S., Fales, H. M., and Macconnell, J. G. 1972. Fire ant venoms: comparative analyses of alkaloidal components. Toxicon 10:259–271.PubMedGoogle Scholar
  26. Brennan, C. A. and Anderson, K. V. 2004. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22:457–483.PubMedGoogle Scholar
  27. Briese, D. T. 1982. The effect of ants on the soil of a semi-arid saltbush habitat. Insect. Soc. 29:375–382.Google Scholar
  28. Brough, E. J. 1983. The antimicrobial activity of the mandibular gland secretion of a Formicine ant, Calomyrmex sp. (Hymenoptera: Formicidae). J. Invertebr. Pathol. 42:306–311.Google Scholar
  29. Brown Jr., W. L. 1968. An hypothesis concerning the function of the metapleural glands in ants. Am. Nat. 102:188–191.Google Scholar
  30. Buschinger, A. and Maschwitz, U. 1984. Defensive behavior and defensive mechanisms in ants, pp. 95–150, in H. R. Hermann (ed.), Defensive mechanisms in social insects. Praeger, New York.Google Scholar
  31. Cabrera, A., Williams, D., Hernández, J. V., Caetano, F. H., and Jaffe, K. 2004. Metapleural- and postpharyngeal-gland secretions from workers of the ants Solenopsis invicta and S. geminata. Chem. Biodivers. 1:303–311.PubMedGoogle Scholar
  32. Cavill, G. W. K., Houghton, E., McDonald, F. J., and Williams, P. J. 1976. Isolation and characterization of dolichodial and related compounds from the Argentine ant, Iridomyrmex humilis. Insect Biochem. 6:483–490.Google Scholar
  33. Chen, J., Cantrell, C. L., Shang, H. W., and Rojas, M. G. 2009. Piperideine alkaloids from the poison gland of the red imported fire ant (Hymenoptera: Formicidae). J. Agric. Food Chem. 57:3128–3133.PubMedGoogle Scholar
  34. Chen, J. S. C., Shen, C. H., and Lee, H. J. 2006. Monogynous and polygynous red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Taiwan. Environ. Entomol. 35:167–172.Google Scholar
  35. Chen, L. and Fadamiro, H. Y. 2009a. Re-investigation of venom chemistry of Solenopsis fire ants. I. Identification of novel alkaloids in S. richteri. Toxicon 53:469–478.PubMedGoogle Scholar
  36. Chen, L. and Fadamiro, H. Y. 2009b. Re-investigation of venom chemistry of Solenopsis fire ants. II. Identification of novel alkaloids in S. invicta. Toxicon 53:479–486.PubMedGoogle Scholar
  37. Cherrett, J. M. 1986. History of the leaf-cutting ant problem, pp. 10–17, in C. S. Lofgren and R. K. Vander Meer (eds.), Fire ants and leaf cutting ants: biology and management. Westview, Boulder.Google Scholar
  38. Cruz López, L., Jackson, B. D., Hefetz, A., and Morgan, E. D. 2006. Alkaloids in the venom of Messor ants. Biochem. Syst. Ecol. 34:199–204.Google Scholar
  39. Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J., and Billen, J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83.PubMedGoogle Scholar
  40. Currie, C. R., Scott, J. A., Summerbell, R. C., and Malloch, D. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704.Google Scholar
  41. Davis Jr., L. R., Vander Meer, R. K., and Porter, S. D. 2001. Red imported fire ants expand their range across the West Indies. Fla. Entomol. 84:735–736.Google Scholar
  42. do Nascimento, R. R., Schoeters, E., Morgan, E. D., Billen, J., and Stradling, D. J. 1996. Chemistry of metapleural gland secretions of three attine ants, Atta sexdens rubropilosa, Atta cephalotes, and Acromyrmex octospinosus (Hymenoptera: Formicidae). J. Chem. Ecol. 22:987–1000.Google Scholar
  43. Domsch, K. H., Gams, W., and Anderson, T.-H. 1980. Compendium of soil fungi. Academic, London.Google Scholar
  44. Dostál, P., Březnová, M., Kozlíčková, V., Herben, T., and Kovář, P. 2005. Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia 49:127–137.Google Scholar
  45. Eisner, T. and Happ, G. M. 1962. The infrabuccal pocket of a formicine ant: a social filtration device. Psyche 69:107–116.Google Scholar
  46. Escoubas, P. and Blum, M. S. 1990. The biological activities of ant-derived alkaloids, pp. 482–489, in R. K. Vander Meer, K. Jaffe, and A. Cedeno (eds.), Applied myrmecology: a world perspective. Westview, Boulder.Google Scholar
  47. Evershed, R. P. and Morgan, E. D. 1983. The amounts of trail pheromone substances in the venom of workers of four species of attine ants. Insect Biochem. 13:469–474.Google Scholar
  48. Fernández-Marín, H., Zimmerman, J. K., Rehner, S. A., and Wcislo, W. T. 2006. Active use of the metapleural glands by ants in controlling fungal infection. Proc. R. Soc. Lond. B Biol. Sci. 273:1689–1695.Google Scholar
  49. Folgarait, P. J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers. Conserv. 7:1221–1244.Google Scholar
  50. Fontenelle, R. O. S., Morais, S. M., Brito, E. H. S., Brilhante, R. S. N., Cordeiro, R. A., Lima, Y. C., Brasil, N. V. G. P. S., Monteiro, A. J., Sidrim, J. J. C., and Rocha, M. F. G. 2011. Alkylphenol activity against Candida spp. and Microsporum canis: a focus on the antifungal activity of thymol, eugenol and O-methyl derivatives. Molecules 16:6422–6431.Google Scholar
  51. Fowler, H. G., Forti, L. C., Pereira da Silva, V., and Saes, N. B. 1986. Economics of grass-cutting ants, pp. 18–35, in C. S. Lofgren and R. K. Vander Meer (eds.), Fire ants and leaf cutting ants: biology and management. Westview, Boulder.Google Scholar
  52. Gellerman, J. L., Walsh, N. J., Werner, N. K., and Schlenk, H. 1969. Antimicrobial effects of anacardic acids. Can. J. Microbiol. 15:1219–1223.PubMedGoogle Scholar
  53. Gerardo, N. M., Jacobs, S. R., Currie, C. R., and Mueller, U. G. 2006. Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. PLoS Biol. 4(e235):6.Google Scholar
  54. Glancey, B. M., Vander Meer, R. K., Glover, A., Lofgren, C. S., and Vinson, S. B. 1981. Filtration of microparticles from liquids ingested by the red imported fire ant, Solenopsis invicta Buren. Insect. Soc. 28:395–401.Google Scholar
  55. Gönczöl, J. and Révay, A. 2003. Treehole fungal communities: aquatic, aero-aquatic and dematiaceous hyphomycetes. Fungal Divers. 12:19–34.Google Scholar
  56. Gorman, J. S. T., Jones, T. H., Spande, T. F., Snelling, R. R., Torres, J. A., and Garraffo, H. M. 1998. 3-hexyl-5-methylindolizidine isomers from thief ants, Solenopsis (Diplorhoptrum) species. J. Chem. Ecol. 24:933–943.Google Scholar
  57. Haeder, S., Wirth, R., Herz, H., and Spiteller, D. 2009. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. U. S. A. 106:4742–4746.PubMedGoogle Scholar
  58. Hashidoko, Y. 2005. Ecochemical studies of interrelationships between epiphytic bacteria and host plants via secondary metabolites. Biosci. Biotechnol. Biochem. 69:1427–1441.PubMedGoogle Scholar
  59. Henshaw, M. T., Kunzmann, N., Vanderwoude, C., Sanetra, M., and Crozier, R. H. 2005. Population genetics and history of the introduced fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae) in Australia. Aust. J. Entomol. 44:37–44.Google Scholar
  60. Hölldobler, B. 1973. Chemische Strategie beim Nahrungserwerb der Diebsameise (Solenopsis fugax Latr.) und der Pharaoameise (Monomorium pharaonis L.). Oecologia 11:371–380.Google Scholar
  61. Hölldobler, B. and Engel-Siegel, H. 1985. On the metapleural gland of ants. Psyche 91:201–224.Google Scholar
  62. Hughes, D., Kassim, O., Gregory, J., Stupart, M., Austin, L., and Duffield, R. 1989. Spectrum of bacterial pathogens transmitted by pharaoh’s ants. Lab. Anim. Sci. 39:167–168.PubMedGoogle Scholar
  63. Hughes, D. P., andersen, S. B., Hywel-Jones, N. L., Himaman, W., Billen, J., and Boomsma, J. J. 2011. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection. BMC Ecol. 11:13.PubMedGoogle Scholar
  64. Hughes, D. P., Evans, H. C., Hywel Jones, N., Boomsma, J. J., and Armitage, S. A. O. 2009. Novel fungal disease in complex leaf-cutting ant societies. Ecol. Entomol. 34:214–220.Google Scholar
  65. Iizuka, T., Iwadare, T., and Orito, K. 1979. Antibactrial activity of myrmicacin a compound in the secretion of South American leaf-cutting ant Atta sexdens and related compounds on pathogenic bacteria in silkworm larvae, Streptococcus faecalis AD-4. J. Fac. Agric. Hokkaido Univ. Hokkaido Daigaku Nogaku bu Kiyo 59:262–266.Google Scholar
  66. Ito, F., Hashim, R., Huei, Y. S., Kaufmann, E., Akino, T., and Billen, J. 2004. Spectacular Batesian mimicry in ants. Naturwissenschaften 91:481–484.PubMedGoogle Scholar
  67. Jaffe, K. and Puche, H. 1984. Colony-specific territorial marking with the metapleural gland secretion in the ant Solenopsis geminata (Fabr). J. Insect Physiol. 30:265–270.Google Scholar
  68. Javors, M. A., Zhou, W., Maas Jr., J. W., Han, S., and Keenan, R. W. 1993. Effects of fire ant venom alkaloids on platelet and neutrophil function. Life Sci. 53:1105–1112.PubMedGoogle Scholar
  69. Jin, W. and Zjawiony, J. K. 2006. 5-alkylresorcinols from Merulius incarnatus. J. Nat. Prod. 69:704–706.PubMedGoogle Scholar
  70. Jones, T. H., Blum, M. S., and Fales, H. M. 1979. Synthesis of unsymmetrical 2,5-di-n-alkylpyrrolidines: 2-hexyl-5-pentylpyrrolidine from the thief ants Solenopsis molesta, S. texanas, and its homologues. Tetrahedon Lett. 1979:1031–1034.Google Scholar
  71. Jones, T. H., Blum, M. S., and Fales, H. M. 1982. Ant venom alkaloids from Solenopsis and Monomorium species. Recent developments. Tetrahedron 38:1949–1958.Google Scholar
  72. Jones, T. H., Blum, M. S., Fales, H. M., and Thompson, C. R. 1980. (5Z,8E)-3-heptyl-5-methylpyrrolizidine from a thief ant. J. Org. Chem. 45:4778–4780.Google Scholar
  73. Jones, T. H., Blum, M. S., and Robertson, H. G. 1990. Novel dialkylpiperidines in the venom of the ant Monomorium delagoense. J. Nat. Prod. 53:429–435.PubMedGoogle Scholar
  74. Jones, T. H., Brunner, S. R., Edwards, A. A., Davidson, D. W., and Snelling, R. R. 2005. 6-alkylsalicylic acids and 6-alkylresorcylic acids from ants in the genus Crematogaster from Brunei. J. Chem. Ecol. 31:407–417.PubMedGoogle Scholar
  75. Jones, T. H., Gorman, J. S. T., Snelling, R. R., Delabie, J. H. C., Blum, M. S., Garraffo, H. M., Jain, P., Daly, J. W., and Spande, T. F. 1999. Further alkaloids common to ants and frogs: decahydroquinolines and a quinolizidine. J. Chem. Ecol. 25:1179–1193.Google Scholar
  76. Jones, T. H., Highet, R. J., Don, A. W., and Blum, M. S. 1986. Alkaloids of the ant Chelaner antarcticus. J. Org. Chem. 51:2712–2716.Google Scholar
  77. Jones, T. H., Voegtle, H. L., Miras, H. M., Weatherford, R. G., Spande, T. F., Garraffo, H. M., Daly, J. W., Davidson, D. W., and Snelling, R. R. 2007. Venom chemistry of the ant Myrmicaria melanogaster from Brunei. J. Nat. Prod. 70:160–168.PubMedGoogle Scholar
  78. Jones, T. H., Zottig, V. E., Robertson, H. G., and Snelling, R. R. 2003. The venom alkaloids from some African Monomorium species. J. Chem. Ecol. 29:2721–2777.PubMedGoogle Scholar
  79. Jouvenaz, D. P., Blum, M. S., and Macconnell, J. G. 1972. Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob. Agents Chemother. 2:291–293.PubMedGoogle Scholar
  80. Kabara, J. J., Swieczkowski, D. M., Conley, A. J., and Truant, J. P. 1972. Fatty acids and derivatives as antimcrobial agents. Antimicrob. Agents Chemother. 2(1):23–28.PubMedGoogle Scholar
  81. Kanoh, A. L. and El-Gindi, O. D. 2004. Studies on the bioactive compounds of Streptomyces sp. Egypt. J. Biomed. Sci. 15:386–401.Google Scholar
  82. Leclercq, S., Charles, S., Braekman, J. C., Daloze, D., Pasteels, J. M., and van Der < SIC > Meer, R. K. 1996. Biosynthesis of the solenopsins, venom alkaloids of the fire ants. Naturwissenschaften 83:222–225.Google Scholar
  83. Leclercq, S., Charles, S., Daloze, D., Braekman, J. C., Aron, S., and Pasteels, J. M. 2001. Absolute configuration of anabasine from Messor and Aphaenogaster ants. J. Chem. Ecol. 27:945–952.PubMedGoogle Scholar
  84. Leclercq, S., Thirionet, I., Broeders, F., Daloze, D., Vander Meer, R., and Braekman, J. C. 1994. Absolute configuration of the solenopsins, venom alkaloids of the fire ants. Tetrahedron 50:8465–8478.Google Scholar
  85. Lenoir, A., Benoist, A., Hefetz, A., Francke, W., Cerdá, X., and Boulay, R. 2011. Trail-following behaviour in two Aphaenogaster ants. Chemoecology 21:83–88.Google Scholar
  86. Lind, N. K. 1982. Mechanism of action of fire ant (Solenopsis) venoms. I. Lytic release of histamine from mast cells. Toxicon 20:831–840.PubMedGoogle Scholar
  87. Little, A. E. and Currie, C. R. 2007. Symbiotic complexity: discovery of a fifth symbiont in the attine ant-microbe symbiosis. Biol. Lett. 3:501–504.PubMedGoogle Scholar
  88. Little, A. E. and Currie, C. R. 2008. Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222.PubMedGoogle Scholar
  89. Lockey, R. F. 1974. Systemic reactions to stinging ants. J. Allergy Clin. Immunol. 54:132–146.PubMedGoogle Scholar
  90. Lofgren, C. S. 1986. History of imported fire ants in the United States, pp. 36–47, in C. S. Lofgren and R. K. Vander Meer (eds.), Fire ants and leaf cutting ants: biology and management. Westview, Boulder.Google Scholar
  91. Lyr, H. and Banasiak, L. 1983. Alkenals, volatile defense substances in plant, their properties and activities. Acta Phytopathol. Acad. Sci. Hung. 18:3–12.Google Scholar
  92. Macconnell, J. G., Blum, M. S., and Fales, H. M. 1970. Alkaloid from fire ant venom: identification and synthesis. Science 168:840–841.PubMedGoogle Scholar
  93. Macconnell, J. G., Blum, M. S., and Fales, H. M. 1971. The chemistry of fire ant venom. Tetrahedron 26:1129–1139.Google Scholar
  94. Mackintosh, J. A., Veal, D. A., Beattie, A. J., and Gooley, A. A. 1998. Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J. Biol. Chem. 273:6139–6143.PubMedGoogle Scholar
  95. Markin, G. P., O’Neal, J., and Dillier, J. 1975. Foraging tunnels of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 48:83–89.Google Scholar
  96. Maschwitz, U. 1974. Vergleichende Untersuchungen zur Funktion der Ameisenmetathorakaldrüse. Oecologia 16:303–310.Google Scholar
  97. Maschwitz, U., Koob, K., and Schildknecht, H. 1970. Ein Beitrag zur Funktion der Metathoracaldrüse der Ameisen. J. Insect Physiol. 16:387–404.Google Scholar
  98. Mason, B. J., Jayaratne, O. W., and Woods, J. D. 1963. An improved vibrating capillary device for producing unifom water droplets of 15 to 500 um radius. J. Sci. Instrum. 40:247–249.Google Scholar
  99. Matsuura, K. 2012. Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies. J. Chem. Ecol., this issue.Google Scholar
  100. Mackintosh, J. A., Trimble, J. E., Jones, M. K., Karuso, P. H., Beattie, A. J., and Veal, D. A. 1995. Antimicrobial mode of action of secretions from the metapleural gland of Myrmecia gulosa (Australian bull ant). Can. J. Microbiol. 41:136–144.Google Scholar
  101. Mendonça, A. D. L., Silva, C. E. D., Mesquita, F. L. T. D., Campos, R. D. S., do Nascimento, R. R., Ximenes, E. C. P. D. A., and Sant’ana, A. E. G. 2009. Antimicrobial activities of components of the glandular secretions of leaf cutting ants of the genus Atta. Antonie van Leeuwenhoek 95:295–303.Google Scholar
  102. Morgan, E. D. 2008. Chemical sorcery for sociality: exocrine secretions of ants (Hymenoptera: Formicidae). Myrmecol. News 11:79–90.Google Scholar
  103. Mueller, U. G., Dash, D., Rabeling, C., and Rodrigues, A. 2008. Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912.PubMedGoogle Scholar
  104. Obin, M. S. and Vander Meer, R. K. 1985. Gaster flagging by fire ants (Solenopsis spp.): functional significance of venom dispersal behavior. J. Chem. Ecol. 11:1757–1768.Google Scholar
  105. Oh, D. C., Poulsen, M., Currie, C. R., and Clardy, J. 2009. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5:391–393.PubMedGoogle Scholar
  106. Orivel, J., Redeker, V., le Caer, J. P., Krier, F., Revol-Junelles, A. M., Longeon, A., Chaffotte, A., Dejean, A., and Rossier, J. 2001. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. J. Biol. Chem. 276:17823–17829.PubMedGoogle Scholar
  107. Ortius-Lechner, D., Maile, R., and Morgan, E. D. 2003. Lack of patriline-specific differences in chemical composition of the metapleural gland secretion in Acromyrmex octospinosus. Insect. Soc. 50:113–119.Google Scholar
  108. Ortius-Lechner, D., Maile, R., Morgan, E. D., and Boomsma, J. J. 2000. Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J. Chem. Ecol. 26:1667–1683.Google Scholar
  109. Ortius-Lechner, D., Maile, R., Morgan, E. D., and Boomsma, J. J. PACHECO, J. A. 2001. The new world thief ants of the genus Solenopsis (Hymenoptera: Formicidae): Ph.D., The University of Texas at El Paso, p 564.Google Scholar
  110. Padavattan, S., Schmidt, M., Hoffman, D. R., and Marković-Housley, Z. 2008. Crystal structure of the major allergen from fire ant venom, Sol i 3. J. Mol. Biol. 383:178–185.PubMedGoogle Scholar
  111. Partridge, M. E., Blackwood, W., Hamilton, R. G., Ford, J., Young, P., and Ownby, D. R. 2008. Prevalence of allergic sensitization to imported fire ants in children living in an endemic region of the southeastern United States. Ann. Allergy Asthma Immunol. 100:54–58.PubMedGoogle Scholar
  112. Paton, T. R., Humphreys, G. S., and Mitchell, P. B. 1995. pp. 213, Soils: a new global view. UCL Press Limited, London.Google Scholar
  113. Pavan, M. 1949. Ricerche sugli antibiotica di origine animale. Ric. Sci. 19:1011–1017.Google Scholar
  114. Pereira, R. M., Stimac, J. L., and Alves, S. B. 1993. Soil antagonism affecting the dose-response of workers of the red imported fire ant, Solenopsis invicta, to Beauveria bassiana conidia. J. Invertebr. Pathol. 61:156–161.Google Scholar
  115. Pierce, A. M., Pierce, H. D., Borden, J. H., and Oehlschlager, A. C. 1991. Fungal volatiles: semiochemicals for stored-product beetles (Coleoptera:Cucujidae). J. Chem. Ecol. 17:581–597.Google Scholar
  116. Pitts, J. P., McHugh, J. V., and Ross, K. G. 2005. Cladistic analysis of the fire ants of the Solenopsis saevissima species-group (Hymenoptera: Formicidae). Zool. Scr. 34:493–505.Google Scholar
  117. Poinar Jr., G. O., Porter, S. D., Tang, S., and Hyman, B. C. 2007. Allomermis solenopsi n. sp. (Nematoda: Mermithidae) parasitising the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) in Argentina. Syst. Parasitol. 68:115–128.PubMedGoogle Scholar
  118. Poulsen, M., Hughes, W. O. H., and Boomsma, J. J. 2006. Differential resistance and the importance of antibiotic production in Acromyrmex echinatior leaf-cutting ant castes towards the entomopathogenic fungus Aspergillus nomius. Insect. Soc. 53:349–355.Google Scholar
  119. Premkumar, T. and Govindarajan, S. 2005. Antimicrobial study of pyrazine, pyrazole and imidazole carboxylic acids and their hydrazinium salts. World J. Microbiol. Biotechnol. 21:470–480.Google Scholar
  120. Rasman, S., ALI, J.G., Helder, J., and van der Puten, W.H. 2012. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol., this issue.Google Scholar
  121. Rhoades, R. B., Schafer, W. L., Newman, M., Lockey, R., Dozier, R. M., Wubbena, P. F., Townes, A. W., Schmid, W. H., Neder, G., Brill, T., et al. 1977. Hypersensitivity to the imported fire ant in Florida: report of 104 cases. J. Fla. Med. Assoc. 64:247–254.PubMedGoogle Scholar
  122. Sánchez-Peña, S. R., Patrock, R. J. W., and Gilbert, L. A. 2005. The red imported fire ant is now in Mexico: documentation of its wide distribution along the Texas-Mexico Border. Entomol. News 116:363–366.Google Scholar
  123. Santos, A. V., Dillon, R. J., Dillon, V. M., Reynolds, S. E., and Samuels, R. I. 2004. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol. Lett. 239:319–323.PubMedGoogle Scholar
  124. Schiestl, F. P., Steinebrunner, F., Schulz, C., von Reus, S., Francke, W., Weymuth, C., and Leuchtmann, A. 2006. Evolution of ‘pollinator’- attracting signals in fungi. Biol. Lett. 2:401–404.PubMedGoogle Scholar
  125. Schildknecht, H. 1976. Chemical ecology—a chapter of modern natural products chemistry. Angew. Chem. Int. Ed. Engl. 15:214–222.Google Scholar
  126. Schildknecht, H. and Koob, K. 1970. Plant bioregulators in the metathoracic glands of myrmicine ants. Angew. Chem. Int. Ed. Engl. 9:173.PubMedGoogle Scholar
  127. Schildknecht, H., Reed, P. B., Reed, F. D., and Koob, K. 1973. Auxin activity in the symbiosis of leaf-cutting ants and their fungus. Insect Biochem. 3:439–442.Google Scholar
  128. Schlüns, H. and Crozier, R. H. 2009. Molecular and chemical immune defenses in ants (Hymenoptera: Formicidae). Myrmecol. News 12:237–249.Google Scholar
  129. Schmidt, J. O. and Blum, M. S. 1978a. The biochemical constituents of the venom of the harvester ant, Pogonomyrmex badius. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol 61:239–247.Google Scholar
  130. Schmidt, J. O. and Blum, M. S. 1978b. Pharmacological and toxicological properties of harvester ant, Pogonomyrmex badius, venom. Toxicon 16:645–652.PubMedGoogle Scholar
  131. Schmidt, O., Theopold, U., and Beckage, N. E. 2008. pp. 353, in N. Beckage (ed.), Insect and vertebrate immunity: key similarities versus differences. Elsevier, Inc, San Diego.Google Scholar
  132. Schoenian, I., Wirth, R., Herz, H., and Spiteller, D. 2011. Synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl. Acad. Sci. U. S. A. 108:1955–1960.PubMedGoogle Scholar
  133. Schoeters, E. and Billen, J. P. J. 1993. Anatomy and fine structure of the metapleural gland in Atta (Hymenoptera, Formicidae). Belg. J. Zool. 123:67–75.Google Scholar
  134. Schröder, F., Franke, S., Francke, W., Baumann, H., Kaib, M., Pasteels, J. M., and Daloze, D. 1996. A new family of tricyclic alkaloids from Myrmicaria ants. Tetrahedron 52:13539–13546.Google Scholar
  135. Schultz, T. R. and Brady, S. G. 2008. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. U. S. A. 105:5435–5440.PubMedGoogle Scholar
  136. Seipke, R. F., Barke, J., Brearley, C., Hill, L., Yu, D. W., Goss, R. J. M., and Hutchings, M. I. 2011. A single Streptomyces mutualist makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS One 6:e22028.PubMedGoogle Scholar
  137. Shank, E. A. and Kolter, R. 2009. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12:205–214.PubMedGoogle Scholar
  138. Shields, M. S., Lingg, A. J., and Heimsch, R. C. 1981. Identification of Penicillium urticae metabolite which inhibits Beaveria bassiana. J. Invertebr. Pathol. 38:374–377.Google Scholar
  139. Soto-Barrientos, N., de Oliveira, J., Vega-Obando, R., Montero-Caballero, D., Vargas, B., Hernández-Gamboa, J., and Orozco-Solano, C. 2011. In-vitro predatory activity of nemaophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes. Rev. Biol. Trop. 59:37–52.PubMedGoogle Scholar
  140. Starr, C. K. 1985. A simple pain scale for field comparison of hymenopteran stings. J. Entomol. Sci. 20:225–232.Google Scholar
  141. Storey, G. K., Vander Meer, R. K., Boucias, D. G., and Mccoy, C. W. 1991. Effect of fire ant (Solenopsis invicta) venom alkaloids on the in vitro germination and development of selected entomogenous fungi. J. Invertebr. Pathol. 58:88–95.Google Scholar
  142. Taguchi, S., Bulet, P., and Hoffmann, J. A. 1998. A novel insect defensin from the ant Formica rufa. Biochimie 80:343–346.PubMedGoogle Scholar
  143. Tanaka, H. O., Inui, Y., and Itioka, T. 2009. Anti-herbivore effects of an ant species, Crematogaster difformis, inhabiting myrmecophytic epiphytes in the canopy of a tropical lowland rainforest in Borneo. Ecol. Res. 24:1393–1397.Google Scholar
  144. Tennant, L. E. and Porter, S. D. 1991. Comparison of diets of two fire ant species (Hymenoptera: Formicidae): solid and liquid components. J. Entomol. Sci. 26:450–465.Google Scholar
  145. Thompson, C. R. 1989. The thief ants, Solenopsis molesta group, of Florida (Hymenoptera: Formicidae). Fla. Entomol. 72:268–283.Google Scholar
  146. Trhlin, M. and Rajchard, J. 2011. Chemical communication in the honeybee (Apis mellifera L.). Vet. Med. 56:265–273.Google Scholar
  147. Tschinkel, W. R. 2004. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4(21):19.Google Scholar
  148. Tschinkel, W. R. 2010. Methods for casting subterranean ant nests. J. Insect Sci. 10(88):17.Google Scholar
  149. Tumlinson, J. H., Moser, J. C., Silverstein, R. M., Brownlee, R. G., and Ruth, J. M. 1972. A volatile trail pheromone of the leaf-cutting ant, Atta texana. J. Insect Physiol. 18:809–814.Google Scholar
  150. Valles, S. M. 2012. Positive strand RNA viruses infecting the red imported fire ant, Solenopsis invicta. Psyche 2012(Article ID 821591):14.Google Scholar
  151. Valles, S. M., Oi, D. H., Yu, F., Tan, X. X., and Buss, E. A. 2012. Metatranscriptomics and pyrosequencing facilitate discovery of potential viral natural enemies of the invasive Caribbean crazy ant, Nylanderia pubens. PLoS One 7:e31828.PubMedGoogle Scholar
  152. Valles, S. M. and PEREIRA, R. M. 2005. Up-regulation of a transferrin gene in response to fungal infection in Solenopsis invicta. [abstract], pp 83, in R. Weeks, et al. [compiliers], Proceedings of Annual Red Imported Fire Ant Conference, March 22–24, 2005, Gulfport, MS, p 254.Google Scholar
  153. Vander Meer, R. K. 1986a. Chemical taxonomy as a tool for separating Solenopsis spp, pp. 316–326, in C. S. Lofgren and R. K. Vander Meer (eds.), Fire ants and leaf cutting ants: biology and management. Westview, Boulder.Google Scholar
  154. Vander Meer, R. K. 1986b. The trail pheromone complex of Solenopsis invicta and Solenopsis richteri, pp. 201–210, in C. S. Lofgren and R. K. Vander Meer (eds.), Fire ants and leaf cutting ants: biology and management. Westview, Boulder. 435 p.Google Scholar
  155. Vander Meer, R. K. and Alonso, L. E. 1998. Pheromone directed behavior in ants, pp. 159–192, in R. K. Vander Meer, M. Breed, M. Winston, and K. E. Espelie (eds.), Pheromone communication in social insects. Westview, Boulder. 368 p.Google Scholar
  156. Vander Meer, R. K., Glancey, B. M., Lofgren, C. S., Glover, A., Tumlinson, J. H., and Rocca, J. 1980. The poison sac of red imported fire ant queens: source of a pheromone attractant. Ann. Entomol. Soc. Am. 73:609–612.Google Scholar
  157. Vander Meer, R. K., Lofgren, C. S., and Alvarez, F. M. 1985. Biochemical evidence for hybridization in fire ants. Fla. Entomol. 68:501–506.Google Scholar
  158. Vander Meer, R. K., Preston, C. A., and Choi, M. Y. 2010. Isolation of a pyrazine alarm pheromone component from the fire ant, Solenopsis invicta. J. Chem. Ecol. 36:163–170.PubMedGoogle Scholar
  159. Villesen, P., Mueller, U. G., Schultz, T. R., Adams, R. M., and Bouck, A. C. 2004. Evolution of ant-cultivar specialization and cultivar switching in Apterostigma fungus-growing ants. Evolution 58:2252–2265.PubMedGoogle Scholar
  160. Voegtle, H. L., Jones, T. H., Davidson, D. W., and Snelling, R. R. 2008. E-2-ethylhexenal, E-2-ethyl-2-hexenol, mellein, and 4-hydroxymellein in Camponotus species from Brunei. J. Chem. Ecol. 34:215–219.PubMedGoogle Scholar
  161. Wagner, D. and Fleur Nicklen, E. 2010. Ant nest location, soil nutrients and nutrient uptake by ant-associated plants: does extrafloral nectar attract ant nests and thereby enhance plant nutrition. J. Ecol. 98:614–624.Google Scholar
  162. Wagner, D. and Jones, J. B. 2006. The impact of harvester ants on decomposition, N mineralization, litter quality, and the availability of N to plants in the Mojave Desert. Soil Biol. Biochem. 38:2593–2601.Google Scholar
  163. Wheeler, J. W., Olubajo, O., Storm, C. B., and Duffield, R. M. 1981. Anabaseine: venom alkaloid of Aphaenogaster ants Attractants. Science 211:1051–1052.PubMedGoogle Scholar
  164. Wiese, M. D., Brown, S. G., Chataway, T. K., Davies, N. W., Milne, R. W., Aulfrey, S. J., and Heddle, R. J. 2007. Myrmecia pilosula (Jack Jumper) ant venom: identification of allergens and revised nomenclature. Allergy 62:437–443.PubMedGoogle Scholar
  165. Wightman, L. and Lighty, D. L. 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant. 55:17–24.Google Scholar
  166. Wilson, E. O. 1958. The fire ant. Sci. Am. 198:36–41.Google Scholar
  167. Wilson, E. O. 1980. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). I. The overall pattern in Atta sexdens. Behav. Ecol. Sociobiol. 7:143–156.Google Scholar
  168. WOJCIK, D. P. and PORTER, S. D. 2012. FORMIS: A master bibliography of ant literature. Gainesvillle, FL: USDA-ARS, CMAVE (
  169. Wrightman, F. 1962. Symposium on the biochemistry and physiology of auxin action: metabolism and biosynthesis of 3-indoleacetic acid and related indole compounds in plants. Can. J. Bot. 40:689–718.Google Scholar
  170. Yeager, J. G. and O’Brien, R. T. 1979. Enterovirus inactivation in soil. Appl. Environ. Microbiol. 38(4):694–701.PubMedGoogle Scholar
  171. Yek, S. H. and Mueller, U. G. 2011. The metapleural gland of ants. Biol. Rev. 86:774–791.PubMedGoogle Scholar
  172. Yuan, Z. L., Chen, Y. C., and Yang, Y. 2009. Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J. Microbiol. Biotechnol. 25:295–303.Google Scholar
  173. Zelezetsky, I., Pag, U., Antcheva, N., Sahl, H. G., and Tossi, A. 2005. Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. Arch. Biochem. Biophys. 434:358–364.PubMedGoogle Scholar
  174. Zeng, L., Lu, Y. Y., He, X. F., Zhang, W. Q., and Liang, G. W. 2005. Identification of red imported fire ant Solenopsis invicta to invade mainland China and infestation in Wuchuan, Guangdong. [in Chinese, English abstract]. Chin. Bull. Entomol. 42:144–148.Google Scholar
  175. Zettler, J. A., Mcinnis Jr., T. M., Allen, C. R., and Spira, T. P. 2002. Biodiversity of fungi in red imported fire ant (Hymenoptera: Formicidae) mounds. Ann. Entomol. Soc. Am. 95:487–491.Google Scholar
  176. Zhang, H.-B., Yang, M.-X., and Tu, R. 2008. Unexpectedly high bacterial diversity in decaying wood of a conifer as revealed by a molecular method. Int. Biodeterior. Biodegrad. 62:471–474.Google Scholar
  177. Zhang, R., Li, Y., Liu, N., and Porter, S. D. 2007. An overview of the red imported fire ant (Hymenoptera: Formicidae) in Mainland China. Fla. Entomol. 90:723–731.Google Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  1. 1.ARS, USDAGainesvilleUSA

Personalised recommendations