Journal of Chemical Ecology

, Volume 38, Issue 6, pp 651–664 | Cite as

Mycorrhiza-Induced Resistance and Priming of Plant Defenses

  • Sabine C. Jung
  • Ainhoa Martinez-Medina
  • Juan A. Lopez-Raez
  • Maria J. PozoEmail author
Review Article


Symbioses between plants and beneficial soil microorganisms like arbuscular-mycorrhizal fungi (AMF) are known to promote plant growth and help plants to cope with biotic and abiotic stresses. Profound physiological changes take place in the host plant upon root colonization by AMF affecting the interactions with a wide range of organisms below- and above-ground. Protective effects of the symbiosis against pathogens, pests, and parasitic plants have been described for many plant species, including agriculturally important crop varieties. Besides mechanisms such as improved plant nutrition and competition, experimental evidence supports a major role of plant defenses in the observed protection. During mycorrhiza establishment, modulation of plant defense responses occurs thus achieving a functional symbiosis. As a consequence of this modulation, a mild, but effective activation of the plant immune responses seems to occur, not only locally but also systemically. This activation leads to a primed state of the plant that allows a more efficient activation of defense mechanisms in response to attack by potential enemies. Here, we give an overview of the impact on interactions between mycorrhizal plants and pathogens, herbivores, and parasitic plants, and we summarize the current knowledge of the underlying mechanisms. We focus on the priming of jasmonate-regulated plant defense mechanisms that play a central role in the induction of resistance by arbuscular mycorrhizas.


Arbuscular mycorrhizas Induced resistance Priming Plant defense Jasmonate Pathogens Insects 



Our research on MIR was financed by grant AGL2006-08029 and AGL2009- 07691 from the Spanish Ministry of Science and Technology. S.C.J. is supported by the JAE program of the Spanish National Research Council (CSIC).


  1. Akiyama, K., Matsuoka, H., and Hayashi, H. 2002. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol. Plant-Microbe Interact. 15:334–340.PubMedCrossRefGoogle Scholar
  2. Akiyama, K., Matsuzaki, K.-I., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.PubMedCrossRefGoogle Scholar
  3. Aloui, A., Recorbet, G., Robert, F., Schoefs, B., Bertrand, M., Henry, C., Gianinazzi-Pearson, V., Dumas-Gaudot, E., and Aschi-Smiti, S. 2011. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biology 11:75.PubMedCrossRefGoogle Scholar
  4. Artursson, V., Finlay, R. D., and Jansson, J. K. 2006. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8:1–10.PubMedCrossRefGoogle Scholar
  5. Ausubel, F. M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6:973–979.PubMedCrossRefGoogle Scholar
  6. Azaizeh, H. A., Marschner, H., Römheld, V., and Wittenmayer, L. 1995. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327.CrossRefGoogle Scholar
  7. Azcón-Aguilar, C. and Barea, J. M. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - An overview of the mechanisms involved. Mycorrhiza 6:457–464.CrossRefGoogle Scholar
  8. Badri, D. V. and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666–681.PubMedCrossRefGoogle Scholar
  9. Bansal, M. and Mukerji, K. G. 1994. Positive correlation between VAM-induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44.CrossRefGoogle Scholar
  10. Barea, J.-M., Pozo, M. J., Azcon, R., and Azcon-Aguilar, C. 2005. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56:1761–1778.PubMedCrossRefGoogle Scholar
  11. Batlle, A., Laviña, A., Sabaté, J., Camprubí, A., Estaún, V., and Calvet, C. 2011. Tolerance increase to Candidatus phytoplasma prunorum in mycorrhizal plums fruit trees. Bull. Insectology 64:125–126.Google Scholar
  12. Beckers, G. J. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10:425–431.PubMedCrossRefGoogle Scholar
  13. BECKERS, G. J. M., JASKIEWICZ, M., LIU, Y., UNDERWOOD, W. R., HE, S. Y., ZHANG, S., and CONRATH, U. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:425–431Google Scholar
  14. Belimov, A. A., Serebrennikova, N. V., and Stepanok, V. V. 1999. Interaction of associative bacteria and an endomycorrhizal fungus with barley upon dual inoculation. Microbiology 68:104–108.Google Scholar
  15. Benhamou, N., Fortin, J. A., Hamel, C., St Arnaud, M., and Shatilla, A. 1994. Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 84:958–968.CrossRefGoogle Scholar
  16. Bennett, A. E. and Bever, J. D. 2007. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218.PubMedCrossRefGoogle Scholar
  17. Berta, G., Fusconi, A., and Hooker, J. E. 2002. Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences, pp. 71–85, in S. Gianinazzi, H. Schüepp, J. M. Barea, and K. Haselwandter (eds.), Mycorrhizal Technology in Agriculture. From Genes to Bioproducts. Birkhaeuser, Basel.CrossRefGoogle Scholar
  18. Blilou, I., Ocampo, J. A., and García-Garrido, J. M. 1999. Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J. Exp. Bot. 50:1663–1668.Google Scholar
  19. Boller, T. and He, S. Y. 2009. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744.PubMedCrossRefGoogle Scholar
  20. Bouwmeester, H. J., Matusova, R., Zhongkui, S., and Beale, M. H. 2003. Secondary metabolite signaling in host–parasitic plant interactions. Curr. Opin. Plant Biol. 6:358–364.PubMedCrossRefGoogle Scholar
  21. Bouwmeester, H. J., Roux, C., Lopez-Raez, J. A., and Bécard, G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12:224–230.PubMedCrossRefGoogle Scholar
  22. Breuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, P., Druege, U., Hause, B., Bucher, M., Kretzschmar, T., Bossolini, E., Kuhlemeier, C., Martinoia, E., Franken, P., Scholz, U., and Reinhardt, D. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J. 64:1002–1017.PubMedCrossRefGoogle Scholar
  23. Campos-Soriano, L., García-Garrido, J. M., and Segundo, B. S. 2010. Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. New Phytol. 188:597–614.PubMedCrossRefGoogle Scholar
  24. Campos-Soriano, L., García-Martínez, J., and Segundo, B. S. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defense-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. doi:. doi: 10.1111/j.1364-3703.2011.00773.x.
  25. CIPOLLINI, D., RIGSBY, C. M., and BARTO, E. K. 2012. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol., this issue.Google Scholar
  26. Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. 2006. Priming: Getting ready for battle. Mol. Plant-Microbe Interact. 19:1062–1071.PubMedCrossRefGoogle Scholar
  27. Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., and Gianinazzi-Pearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant-Microbe Interact. 11:1017–1028.CrossRefGoogle Scholar
  28. Currie, A. F., Murray, P. J., and Gange, A. C. 2011. Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi? Appl. Soil Ecol. 47:77–83.CrossRefGoogle Scholar
  29. Chandanie, W., Kubota, M., and Hyakumachi, M. 2006. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 286:209–217.CrossRefGoogle Scholar
  30. Chandanie, W. A., Kubota, M., and Hyakumachi, M. 2005. Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp.on their root colonization and growth promotion of cucumber (Cucumis sativus L.). Mycoscience 46:201–204.CrossRefGoogle Scholar
  31. Chandanie, W. A., Kubota, M., and Hyakumachi, M. 2009. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl. Soil Ecol 41:336–341.CrossRefGoogle Scholar
  32. D’AMELIO, R., BERTA, G., GAMALERO, E., MASSA, N., AVIDANO, L., CANTAMESSA, S., D’AGOSTINO, G., BOSCO, D., and MARZACHÌ, C. 2011. Increased plant tolerance against chrysanthemum yellows phytoplasma (Candidatus Phytoplasma asteris) following double inoculation with Glomus mosseae BEG12 and Pseudomonas putida S1Pf1Rif. Plant Pathol 60:1014–1022.CrossRefGoogle Scholar
  33. de la Noval, B., Pérez, E., Martínez, B., León, O., Martínez-Gallardo, N., and Délano-Frier, J. 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17:449–460.PubMedCrossRefGoogle Scholar
  34. de la Peña, E., Echeverría, S. R., van der Putten, W. H., Freitas, H., and Moens, M. 2006. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol. 169:829–840.PubMedCrossRefGoogle Scholar
  35. de Román, M., Fernández, I., Wyatt, T., Sahrawy, M., Heil, M., and Pozo, M. J. 2011. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J. Ecol. 99:36–45.CrossRefGoogle Scholar
  36. Dicke, M., van Loon, J. J. A., and Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5:317–324.PubMedCrossRefGoogle Scholar
  37. Dumas-Gaudot, E., Gollotte, A., Cordier, C., Gianinazzi, S., and Gianinazzi-Pearson, V. 2000. Modulation of host defence systems, pp. 173–200 in Y. Kapulnick, and D. D. Douds Jr (eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Press, Dordrecht.Google Scholar
  38. Dumas-Gaudot, E., Slezack, S., Dassi, B., Pozo, M., Gianinazzi-Pearson, V., and Gianinazzi, S. 1996. Plant hydrolytic enzymes (chitinases and β-1,3-glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil 185:211–221.CrossRefGoogle Scholar
  39. EFFMERT U., KALDERAS J., WARNKE R., and PIECHULLA B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol., this issue.Google Scholar
  40. Elsen, A., Gervacio, D., Swennen, R., and de Waele, D. 2008. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256.PubMedCrossRefGoogle Scholar
  41. Ferrari, A. E. and Wall, L. G. 2008. Coinoculation of black locust with Rhizobium and Glomus on a desurfaced soil. Soil Sci. 173:195–202.CrossRefGoogle Scholar
  42. Fester, T., Fetzer, I., Buchert, S., Lucas, R., Rillig, M., and Härtig, C. 2011. Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. Oecologia 167:913–924.Google Scholar
  43. Fester, T. and Hause, G. 2005. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379.PubMedCrossRefGoogle Scholar
  44. Fester, T. and Sawers, R. 2011. Progress and challenges in agricultural applications of arbuscular mycorrhizal fungi. Crit. Rev. Plant Sci. 30:459–470.CrossRefGoogle Scholar
  45. Fiorilli, V., Catoni, M., Miozzi, L., Novero, M., Accotto, G. P., and Lanfranco, L. 2009. Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol. 184:975–987.PubMedCrossRefGoogle Scholar
  46. FLOβ, D. S., HAUSE, B., LANGE, P. R., KÜSTER, H., STRACK, D., and WALTER, M. H. 2008. Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J 56:86–100.CrossRefGoogle Scholar
  47. Fontana, A., Reichelt, M., Hempel, S., Gershenzon, J., and Unsicker, S. 2009. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J. Chem. Ecol. 35:833–843.PubMedCrossRefGoogle Scholar
  48. Fritz, M., Jakobsen, I., Lyngkjær, M. F., Thordal-Christensen, H., and Pons-Kühnemann, J. 2006. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419.PubMedCrossRefGoogle Scholar
  49. Gange, A. C. 1996. Reduction in vine weevil larval growth by mycorrhizal fungi. Mitt. Biol. Bund. Forst. 316:56–60.Google Scholar
  50. Gange, A. C. 2001. Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol. 150:611–618.CrossRefGoogle Scholar
  51. Gange, A. C. 2007. Insect–mycorrhizal interactions: patterns, processes, and consequences, pp. 124–144, in T. Ohgushi, T. P. Craig, and P. W. Price (eds.), Ecological Communities: Plant Mediation in Indirect Interaction Webs. Cambridge University Press, New York.CrossRefGoogle Scholar
  52. Gange, A. C., Bower, E., and Brown, V. K. 1999. Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123–131.CrossRefGoogle Scholar
  53. Gange, A. C. and Smith, A. K. 2005. Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. Ecol. Entomol. 30:600–606.CrossRefGoogle Scholar
  54. Gange, A. C. and West, H. M. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol. 128:79–87.CrossRefGoogle Scholar
  55. García-Garrido, J. M. and Ocampo, J. A. 2002. Regulation of the plant defense response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53:1377–1386.PubMedCrossRefGoogle Scholar
  56. Garmendia, I., Goicoechea, N., and Aguirreolea, J. 2004. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biol. Contr. 31:296–305.CrossRefGoogle Scholar
  57. Gehring, C. and Bennett, A. 2009. Mycorrhizal fungal-plant-insect interactions: The importance of a community approach. Environ. Entomol. 38:93–102.PubMedCrossRefGoogle Scholar
  58. Gernns, H., von Alten, H., and Poehling, H. M. 2001. Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen - Is a compensation possible? Mycorrhiza 11:237–243.CrossRefGoogle Scholar
  59. Goellner, K. and Conrath, U. 2008. Priming: It's all the world to induced disease resistance. Eur. J. Plant Pathol. 121:233–242.CrossRefGoogle Scholar
  60. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–227.Google Scholar
  61. Goverde, M., van der Heijden, M. V. D. H., Wiemken, A., Sanders, I. S., and Erhardt, A. 2000. Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369.CrossRefGoogle Scholar
  62. Guerrieri, E., Lingua, G., Digilio, M. C., Massa, N., and Berta, G. 2004. Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol. Entomol. 29:753–756.CrossRefGoogle Scholar
  63. Güimil, S., Chang, H.-S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E. J., Docquier, M., Descombes, P., Briggs, S. P., and Paszkowski, U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Nat. Acad. Sci. USA 102:8066–8070.PubMedCrossRefGoogle Scholar
  64. Haggag, W. M. and Abd-El Latif, F. M. 2001. Interaction between vesicular arbuscular mycorrhizae and antagonistic biocontrol microorganisms on controlling root rot disease incidence of geranium plants. OnLine J. Biol. Sci. 1:1147–1153.Google Scholar
  65. Hao, Z., Fayolle, L., van Tuinen, D., Chatagnier, O., Li, X., Gianinazzi, S., and Gianinazzi-Pearson, V. 2012. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defense gene responses in grapevine. J. Exp. Bot. doi:. doi: 10.1093/jxb/ers046.
  66. Harrier, L. A. and Watson, C. A. 2004. The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag. Sci. 60:149–157.PubMedCrossRefGoogle Scholar
  67. Harrison, M. J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:361–389.PubMedCrossRefGoogle Scholar
  68. Hartley, S. E. and Gange, A. C. 2009. Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context. Annu. Rev. Entomol. 54:323–342.PubMedCrossRefGoogle Scholar
  69. Hause, B. and Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196.PubMedCrossRefGoogle Scholar
  70. Hause, B., Maier, W., Miersch, O., Kramell, R., and Strack, D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130:1213–1220.PubMedCrossRefGoogle Scholar
  71. Hause, B., Mrosk, C., Isayenkov, S., and Strack, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110.PubMedCrossRefGoogle Scholar
  72. Hause, B. and Schaarschmidt, S. 2009. The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599.PubMedCrossRefGoogle Scholar
  73. Heil, M. and Ton, J. 2008. Long-distance signaling in plant defense. Trends Plant Sci. 13:264–272.PubMedCrossRefGoogle Scholar
  74. Herrera-Medina, M. J., Gagnon, H., Piche, Y., Ocampo, J. A., García-Garrido, J. M., and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164:993–998.CrossRefGoogle Scholar
  75. Hoffmann, D., Vierheilig, H., Peneder, S., and Schausberger, P. 2011. Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecol. Entomol. 36:574–581.CrossRefGoogle Scholar
  76. Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.Google Scholar
  77. Jaiti, F., Meddich, A., and EL HADRAMI, I. 2007. Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol. Mol Plant Pathol 71:166–173.CrossRefGoogle Scholar
  78. Jia, Y., Gray, V. M., and Straker, C. J. 2004. The influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann. Bot. 94:251–258.PubMedCrossRefGoogle Scholar
  79. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323–329.PubMedCrossRefGoogle Scholar
  80. Kamińska, M., Klamkowski, K., Berniak, H., and Sowik, I. 2010a. Response of mycorrhizal periwinkle plants to aster yellows phytoplasma infection. Mycorrhiza 20:161–166.PubMedCrossRefGoogle Scholar
  81. Kamińska, M., Klamkowski, K., Berniak, H., and Treder, W. 2010b. Effect of arbuscular mycorrhizal fungi inoculation on aster yellows phytoplasma-infected tobacco plants. Sci. Hortic. 125:500–503.CrossRefGoogle Scholar
  82. Kaschuk, G., Kuyper, T. W., Leffelaar, P. A., Hungria, M., and Giller, K. E. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem. 41:1233–1244.CrossRefGoogle Scholar
  83. Kessler, A., Halitschke, R., Diezel, C., and Baldwin, I. 2006. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292.PubMedCrossRefGoogle Scholar
  84. Khaosaad, T., García-Garrido, J. M., Steinkellner, S., and Vierheilig, H. 2007. Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol. Biochem. 39:727–734.CrossRefGoogle Scholar
  85. Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., Fellbaum, C. R., Kowalchuk, G. A., Hart, M. M., Bago, A., Palmer, T. M., West, S. A., Vandenkoornhuyse, P., Jansa, J., and Bücking, H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882.PubMedCrossRefGoogle Scholar
  86. Kloppholz, S., Kuhn, H., and Requena, N. 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–1209.PubMedCrossRefGoogle Scholar
  87. Kobra, N., Jalil, K., and Youbert, G. 2009. Effects of three Glomus species as biocontrol agents against verticillium-induced wilt in cotton. J. Plant Protect. Res. 49:4.Google Scholar
  88. Kohler, J., Caravaca, F., Carrasco, L., and Roldán, A. 2007. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480–487.CrossRefGoogle Scholar
  89. Koricheva, J., Gange, A. C., and Jones, T. 2009. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097.PubMedCrossRefGoogle Scholar
  90. Kravchuk, Z., Vicedo, B., Flors, V., Camañes, G., González-Bosch, C., and García-Agustín, P. 2011. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. Plant Physiol 168:359–366.CrossRefGoogle Scholar
  91. Kula, A. A. R., Hartnett, D. C., and Wilson, G. W. T. 2005. Effects of mycorrhizal symbiosis on tallgrass prairie plant–herbivore interactions. Ecol. Lett. 8:61–69.CrossRefGoogle Scholar
  92. Larimer, A., Bever, J., and Clay, K. 2010. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51:139–148.CrossRefGoogle Scholar
  93. Lee, C. S., Lee, Y. J., and Jeun, Y. C. 2005. Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol. J. 21:237–243.CrossRefGoogle Scholar
  94. Leitner, M., Kaiser, R., Hause, B., Boland, W., and Mithöfer, A. 2010. Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula? Mycorrhiza 20:89–101.PubMedCrossRefGoogle Scholar
  95. Lendzemo, V. W., Kuyper, T. W., Matusova, R., Bouwmeester, H. J., and Ast, A. V. 2007. Colonization by arbuscular mycorrhizal fungi of Sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Sign. Behav. 2:58–62.CrossRefGoogle Scholar
  96. Li, H.-Y., Yang, G.-D., Shu, H.-R., Yang, Y.-T., Ye, B.-X., Nishida, I., and Zheng, C.-C. 2006. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163.PubMedCrossRefGoogle Scholar
  97. Linderman, R. G. 1994. Role of VAM fungi in biocontrol, pp. 1–26, in F. L. Pfleger and R. G. Linderman (eds.), Mycorrhizae and Plant Health. APS Press, St. Paul, MN.Google Scholar
  98. Lioussanne, L., Jolicoeur, M., and St-Arnaud, M. 2008. Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol. Biochem. 40:2217–2224.CrossRefGoogle Scholar
  99. Liu, J., Blaylock, L. A., Endre, G., Cho, J., Town, C. D., Vandenbosch, K. A., and Harrison, M. J. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123.PubMedCrossRefGoogle Scholar
  100. Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., and Harrison, M. J. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 50:529–544.PubMedCrossRefGoogle Scholar
  101. López-Ráez, J. A., Flors, V., García, J. M., and Pozo, M. J. 2010a. AM symbiosis alters phenolic acid content in tomato roots. Plant Sign Behav. 5:1138–1140.CrossRefGoogle Scholar
  102. López-Ráez, J. A., Verhage, A., Fernández, I., García, J. M., Azcón-Aguilar, C., Flors, V., and Pozo, M. J. 2010b. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot. 61:2589–2601.PubMedCrossRefGoogle Scholar
  103. López-Ráez, J. A., Charnikhova, T., Fernández, I., Bouwmeester, H., and Pozo, M. J. 2011a. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J. Plant Physiol. 168:294–297.PubMedCrossRefGoogle Scholar
  104. López-Ráez, J. A., Pozo, M. J., and García-Garrido, J. M. 2011b. Strigolactones: a cry for help in the rhizosphere. Botany 89:513–522.CrossRefGoogle Scholar
  105. Ludwig-Müller, J. 2010. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi, pp. 169–190, in H. Koltai and Y. Kapulnik (eds.), Arbuscular Mycorrhizas: Physiology and Function. Springer Netherlands, Dordrecht.CrossRefGoogle Scholar
  106. Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., and Ton, J. 2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844–853.PubMedCrossRefGoogle Scholar
  107. Marschner, P., Crowley, D. E., and Higashi, R. M. 1997. Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil 189:11–20.CrossRefGoogle Scholar
  108. Martínez-Medina, A., Pascual, J. A., Lloret, E., and Roldán, A. 2009. Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J. Sci. Food Agric. 89:1843–1850.CrossRefGoogle Scholar
  109. Martínez-Medina, A., Pascual, J. A., Pérez-Alfocea, F., Albacete, A., and Roldán, A. 2010. Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants. Phytopathology 100:682–688.PubMedCrossRefGoogle Scholar
  110. Meyer, J. R. and Linderman, R. G. 1986. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18:185–190.CrossRefGoogle Scholar
  111. Miransari, M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12:563–569.PubMedGoogle Scholar
  112. Møller, K., Kristensen, K., Yohalem, D., and Larsen, J. 2009. Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol. Control 49:120–125.CrossRefGoogle Scholar
  113. Mukerji, K. and Ciancio, A. 2007. Mycorrhizae in the integrated pest and disease management, pp. 245–266, in A. Ciancio and K. G. Mukerji (eds.), General Concepts in Integrated Pest and Disease Management. Springer Netherlands, Dordrecht.CrossRefGoogle Scholar
  114. Newsham, K. K., Fitter, A. H., and Watkinson, A. R. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10:407–411.PubMedCrossRefGoogle Scholar
  115. Niranjan, R., Mohan, V., and Rao, V. M. 2007. Effect of indole acetic acid on the synergistic interactions of Bradyrhizobium and Glomus fasciculatum on growth, nodulation, and nitrogen fixation of Dalbergia sissoo Roxb. Arid Land Res. Manag. 21:329–342.CrossRefGoogle Scholar
  116. Norman, J. R. and Hooker, J. E. 2000. Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol. Res. 104:1069–1073.CrossRefGoogle Scholar
  117. PASTOR, V., LUNA, E., MAUCH-MANI, B., TON, J., and FLORS, V. 2012. Primed plants do not forget. Environ. Exp. Bot., doi.:  10.1016/j.envexpbot.2012.02.013
  118. Paszkowski, U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Op. Plant Biol. 9:364–370.CrossRefGoogle Scholar
  119. PÉRET, B., SVISTOONOFF, S., and LAPLAZE, L. 2009. When plants socialize: Symbioses and root development. Annu. Plant Rev. 209238Google Scholar
  120. Pieterse, C. M. J., Koornneef, A., Leonreyes, H. A., Ritsema, T., Verhage, A., Joosten, R. G., Vos, M. D., Oosten, V. R. V., and Dicke, M. 2008. Cross-talk between signaling pathways leading to defense against pathogens and insects, pp. 1–9, in M. Lorito, S. L. Woo, and F. Scala (eds.), Biology of Plant-microbe Interactions. International Society for Molecular Plant-Microbe Interactions, St. Paul, MN.Google Scholar
  121. Pieterse, C. M. J., Leon-Reyes, A., van der Ent, S., and van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308–316.PubMedCrossRefGoogle Scholar
  122. Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580.PubMedGoogle Scholar
  123. Pineda, A., Zheng, S.-J., van Loon, J. J. A., Pieterse, C. M. J., and Dicke, M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci. 15:507–514.PubMedCrossRefGoogle Scholar
  124. Pinochet, J., Calvet, C., Camprubí, A., and Fernández, C. 1996. Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: A review. Plant Soil 185:183–190.CrossRefGoogle Scholar
  125. Pivato, B., Gamalero, E., Lemanceau, P., and Berta, G. 2008. Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. FEMS Microbiol. Lett. 289:173–180.PubMedCrossRefGoogle Scholar
  126. Pozo, M. J. and Azcón-Aguilar, C. 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10:393–398.PubMedCrossRefGoogle Scholar
  127. Pozo, M. J., Azcón-Aguilar, C., Dumas-Gaudot, E., and Barea, J. M. 1998. Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. J. Exp. Bot. 49:1729–1739.Google Scholar
  128. Pozo, M. J., Azcón-Aguilar, C., Dumas-Gaudot, E., and Barea, J. M. 1999. β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci. 141:149–157.CrossRefGoogle Scholar
  129. Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M., and Azcón-Aguilar, C. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53:525–534.PubMedCrossRefGoogle Scholar
  130. Pozo, M. J., Jung, S. C., López-Ráez, J. A., and Azcón-Aguilar, C. 2010. Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: The role of plant defence mechanisms, pp. 193–207, in H. Koltai and Y. Kapulnik (eds.), Arbuscular Mycorrhizas: Physiology and Function. Springer Netherlands, Dordrecht.CrossRefGoogle Scholar
  131. Pozo, M. J., van der Ent, S., van Loon, L. C., and Pieterse, C. M. J. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180:511–523.PubMedCrossRefGoogle Scholar
  132. Pozo, M. J., van Loon, L. C., and Pieterse, C. M. J. 2004. Jasmonates - Signals in plantmicrobe interactions. J. Plant Growth Reg. 23:211–222.Google Scholar
  133. Pozo, M. J., Verhage, A., García-Andrade, J., García, J. M., and Azcón-Aguilar, C. 2009. Priming plant defence against pathogens by arbuscular mycorrhizal fungi, pp. 123–135, in C. Azcón-Aguilar, J. M. Barea, S. Gianinazzi, and V. Gianinazzi-Pearson (eds.), Mycorrhizas - Functional Processes and Ecological Impact. Springer, Berlin Heidelberg.CrossRefGoogle Scholar
  134. Rabin, L. B. and Pacovsky, R. S. 1985. Reduced larva growth of two Lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J. Econ. Entomol. 78:1358–1363.Google Scholar
  135. Rapparini, F., Llusià, J., and Peñuelas, J. 2008. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol. 10:108–122.PubMedCrossRefGoogle Scholar
  136. Rasmann, S., de Vos, M., Casteel, C. L., Tian, D., Halitschke, R., Sun, J. Y., Agrawal, A. A., Felton, G. W., and Jander, G. 2012. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 158:854–863.PubMedCrossRefGoogle Scholar
  137. Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W., and Paré, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017–1026.PubMedCrossRefGoogle Scholar
  138. Saldajeno, M. G. B. and Hyakumachi, M. 2011. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann. Appl. Biol. 159:28–40.CrossRefGoogle Scholar
  139. Schausberger, P., Peneder, S., Jürschik, S., and Hoffmann, D. 2011. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct. Ecol. 26:441–449.Google Scholar
  140. Schliemann, W., Ammer, C., and Strack, D. 2008. Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146.PubMedCrossRefGoogle Scholar
  141. SCHÜßLER, A., SCHWARZOTT, D., and WALKER, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res 105:1413–1421.CrossRefGoogle Scholar
  142. Shoresh, M., Yedidia, I., and Chet, I. 2005. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84.PubMedCrossRefGoogle Scholar
  143. Sikes, B. A., Cottenie, K., and Klironomos, J. N. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97:1274–1280.CrossRefGoogle Scholar
  144. Slezack, S., Dumas-Gaudot, E., Paynot, M., and Gianinazzi, S. 2000. Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol. Plant-Microbe Interact. 13:238–241.PubMedCrossRefGoogle Scholar
  145. Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., and Mauch-Mani, B. 2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158:835–843.PubMedCrossRefGoogle Scholar
  146. Smith, S., Facelli, E., Pope, S., and ANDREW SMITH, F. 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20.CrossRefGoogle Scholar
  147. Smith, S. E., Jakobsen, I., Grønlund, M., and Smith, F. A. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156:1050–1057.PubMedCrossRefGoogle Scholar
  148. Smith, S. E. and Read, D. J. 2008. Mycorrhizal Symbiosis. 3rd edition. Academic Press, New York.Google Scholar
  149. Smith, S. E. and Smith, F. A. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62:227–250.PubMedCrossRefGoogle Scholar
  150. Snoeren, T., van Poecke, R., and Dicke, M. 2009. Multidisciplinary approach to unravelling the relative contribution of different oxylipins in indirect defense of Arabidopsis thaliana. J. Chem. Ecol. 35:1021–1031.PubMedCrossRefGoogle Scholar
  151. Song, Y. Y., Zeng, R. S., Xu, J. F., Li, J., Shen, X., and Yihdego, W. G. 2010. Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 5: doi: 10.1371/journal.pone.0013324.s0013003
  152. Sood, S. G. 2003. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol. Ecol. 45:219–227.CrossRefGoogle Scholar
  153. Soto, M. J., Domínguez-Ferreras, A., Pérez-Mendoza, D., Sanjuán, J., and Olivares, J. 2009. Mutualism versus pathogenesis: the give-and-take in plant–bacteria interactions. Cell. Microbiol. 11:381–388.PubMedCrossRefGoogle Scholar
  154. Stein, E., Molitor, A., Kogel, K. H., and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49:1747–1751.PubMedCrossRefGoogle Scholar
  155. Stepanova, A. N. and Alonso, J. M. 2009. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 12:548–555.PubMedCrossRefGoogle Scholar
  156. Strack, D., Fester, T., Hause, B., Schliemann, W., and Walter, M. H. 2003. Arbuscular mycorrhiza: Biological, chemical, and molecular aspects. J. Chem. Ecol. 29:1955–1979.PubMedCrossRefGoogle Scholar
  157. Strack, D. and Fester, T. 2006. Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol. 172:22–34.PubMedCrossRefGoogle Scholar
  158. Thomma, B. P. H. J., Nürnberger, T., and Joosten, M. H. A. J. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant Cell 23:4–15.PubMedCrossRefGoogle Scholar
  159. Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., Mauch-Mani, B., and Turlings, T. C. J. 2007. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16–26.PubMedCrossRefGoogle Scholar
  160. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Métraux, J. P., and Mauch-Mani, B. 2005. Dissecting the ß-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999.PubMedCrossRefGoogle Scholar
  161. Toro, M., Azcón, R., and Herrera, R. 1996. Effects on yield and nutrition of mycorrhizal and nodulated Pueraria phaseoloides exerted by P-solubilizing rhizobacteria. Biol. Fertil. Soils 21:23–29.CrossRefGoogle Scholar
  162. Toussaint, J. P. 2007. Investigating physiological changes in the aerial parts of AM plants: What do we know and where should we be heading? Mycorrhiza 17:349–353.PubMedCrossRefGoogle Scholar
  163. van der Ent, S., van Hulten, M., Pozo, M. J., Czechowski, T., Udvardi, M. K., Pieterse, C. M. J., and Ton, J. 2009a. Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: Differences and similarities in regulation. New Phytol. 183:419–431.PubMedCrossRefGoogle Scholar
  164. van der Ent, S., van Wees, S. C. M., and Pieterse, C. M. J. 2009b. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588.PubMedCrossRefGoogle Scholar
  165. van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. J., and Ton, J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 103:5602–5607.PubMedCrossRefGoogle Scholar
  166. van Wees, S. C. M., van der Ent, S., and Pieterse, C. M. J. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443–448.PubMedCrossRefGoogle Scholar
  167. Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., van Loon, L. C., and Pieterse, C. M. J. 2004. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol. Plant-Microbe Interact. 17:895–908.PubMedCrossRefGoogle Scholar
  168. Vicari, M., Hatcher, P. E., and Ayres, P. G. 2002. Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology 83:2452–2464.CrossRefGoogle Scholar
  169. Vicedo, B., Flors, V., De La O Leyva, M., Finiti, I., Kravchuk, Z., Real, M. D., García-Agustín, P., and González-Bosch, C. 2009. Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Mol. Plant-Microbe Interact. 22:1455–1465.PubMedCrossRefGoogle Scholar
  170. Vierheilig, H. 2004. Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. Plant Physiol. 161:339–341.CrossRefGoogle Scholar
  171. Vierheilig, H. and Piché, Y. 2002. Signalling in arbuscular mycorrhiza: Facts and hypotheses, pp. 23–39, in B. Buslig and J. Manthey (eds.), Flavonoids in Cell Functions. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  172. Vierheilig, H., Steinkellner, S., Khaosaad, T., and Garcia-Garrido, J. M. 2008. The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: One mechanism, two effects? pp. 307–320, in A. Varma (ed.), mycorrhiza. Springer, Berlin, Heidelberg.CrossRefGoogle Scholar
  173. VOS, C., CLAERHOUT, S., MK and AWIRE, R., PANIS, B., DE WAELE, D., and ELSEN, A. 2011. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345.Google Scholar
  174. Walters, D. and Heil, M. 2007. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71:3–17.CrossRefGoogle Scholar
  175. Walling, L. L. 2008. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiol. 146:859–866.PubMedCrossRefGoogle Scholar
  176. Whipps, J. M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot. 82:1198–1227.CrossRefGoogle Scholar
  177. Wolfe, B. E., Husband, B. C., and Klironomos, J. N. 2005. Effects of a belowground mutualism on an aboveground mutualism. Ecol. Lett. 8:218–223.CrossRefGoogle Scholar
  178. Wright, D. P., Read, D. J., and Scholes, J. D. 1998a. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21:881–891.CrossRefGoogle Scholar
  179. Wright, D. P., Scholes, J. D., and Read, D. J. 1998b. Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 21:209–216.CrossRefGoogle Scholar
  180. Yan, Z., Reddy, M. S., Ryu, C. M., McInroy, J. A., Wilson, M., and Kloepper, J. W. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333.PubMedCrossRefGoogle Scholar
  181. Yao, M. K., Désilets, H., Charles, M. T., Boulanger, R., and Tweddell, R. J. 2003. Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336.PubMedCrossRefGoogle Scholar
  182. Yi, H.-S., Heil, M., Adame-Álvarez, R. M., Ballhorn, D. J., and Ryu, C.-M. 2009. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 151:2152–2161.PubMedCrossRefGoogle Scholar
  183. Zamioudis, C. and Pieterse, C. M. J. 2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–150.PubMedCrossRefGoogle Scholar
  184. Zeng, R.-S. 2006. Disease resistance in plants through mycorrhizal fungi induced allelochemicals, pp. 181–192, in Inderjit and and K. G. Mukerji (eds.), Allelochemicals: Biological Control of Plant Pathogens and Diseases. Springer Netherlands, Dordrecht.CrossRefGoogle Scholar
  185. Zhu, H. H. and Yao, Q. 2004. Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J. Phytopathol. 152:537–542.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sabine C. Jung
    • 1
  • Ainhoa Martinez-Medina
    • 1
  • Juan A. Lopez-Raez
    • 1
  • Maria J. Pozo
    • 1
    Email author
  1. 1.Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ)CSICGranadaSpain

Personalised recommendations