Journal of Chemical Ecology

, Volume 38, Issue 6, pp 802–809 | Cite as

Substrate Temperature Constrains Recruitment and Trail Following Behavior in Ants

  • Louise van OudenhoveEmail author
  • Raphaël Boulay
  • Alain Lenoir
  • Carlos Bernstein
  • Xim Cerda


In many ant species, foragers use pheromones to communicate the location of resources to nestmates. Mass-recruiting species deposit long-lasting anonymous chemical trails, while group-recruiting species use temporary chemical trails. We studied how high temperature influenced the foraging behavior of a mass-recruiting species (Tapinoma nigerrimum) and a group-recruiting species (Aphaenogaster senilis) through pheromone decay. First, under controlled laboratory conditions, we examined the effect of temperature on the trail pheromone of both species. A substrate, simulating soil, marked with gaster extract was heated for 10 min. at 25°, 35°, 45°, or 55 °C and offered to workers in a choice test. Heating gaster extract reduced the trail following behavior of the mass-recruiters significantly more than that of the group-recruiters. Second, analyses of the chemicals present on the substrate indicated that most T. nigerrimum gaster secretions vanished at 25 °C, and only iridodials persisted up to 55 °C. By contrast, A. senilis secretions were less volatile and resisted better to elevated temperatures to some extent. However, at 55 °C, the only chemicals that persisted were nonadecene and nonadecane. Overall, our results suggest that the foraging behavior of the group-recruiting species A. senilis is less affected by pheromone evaporation than that of the mass-recruiting species T. nigerrimum. This group-recruiting species might, thus, be particularly adapted to environments with fluctuating temperatures.


Ant communities Trail pheromone Temperature Competition Tapinoma nigerrimum Aphaenogaster senilis 



We thank two anonymous referees for helpful comments. We are grateful to Jessica Pearce for revision of the manuscript (and English checking). Doñana National Park authorities gave permission to collect ant colonies. Experimental work in EBD have been funded by Spanish Ministerio de Ciencia e Innovación/FEDER (projects CGL2009-09690/BOS and CGL2009-12472/BOS). This work conforms to the legal requirements of the Spanish law.

Supplementary material

10886_2012_130_MOESM1_ESM.pdf (21 kb)
ESM 1 (PDF 21 kb)


  1. Albrecht, M. and Gotelli, N. 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia 126:134–141.CrossRefGoogle Scholar
  2. Andersen, A. N. 2008. Not enough niches: Non-equilibrial processes promoting species coexistence in diverse ant communities. Aust. Ecol. 33:211–220.CrossRefGoogle Scholar
  3. Beckers, R., Goss, S., Deneubourg, J., and Pasteels, J. 1989. Colony size, communication and ant foraging strategy. Psyche 96:239–256.CrossRefGoogle Scholar
  4. Beckers, R., Deneubourg, J., and Goss, S. 1992. Trail laying behaviour during food recruitment in the ant Lasius niger (L.). Insect. Soc. 39:59–72.CrossRefGoogle Scholar
  5. Bestelmeyer, B. T. 2000. The trade-off between thermal tolerance and behavioural dominance in a subtropical south american ant community. J. Anim. Ecol. 69:998–1009.CrossRefGoogle Scholar
  6. Blight, O., Provost, E., Renucci, M., Tirard, A., and Orgeas, J. 2010. A native ant armed to limit the spread of the Argentine ant. Biol. Inv. 12:3785–3793.CrossRefGoogle Scholar
  7. Blüthgen, N. and Fiedler, K. 2004. Competition for composition: Lessons from nectar-feeding ant communities. Ecology 85:1279–1485.CrossRefGoogle Scholar
  8. Bonabeau, E., Theraulaz, G., and Deneubourg, J.-L. 1998. Group and mass recruitment in ant colonies: The influence of contact rates. J. Theor. Biol. 195:157–166.PubMedCrossRefGoogle Scholar
  9. Boulay, R., Hefetz, A., Cerdá, X., Devers, S., Francke, W., Twele, R., and Lenoir, A. 2007a. Production of sexuals in a fission-performing ant: Dual effects of queen pheromones and colony size. Behav. Ecol. Sociobiol. 61:1531–1541.CrossRefGoogle Scholar
  10. Boulay, R., Carro, F., Soriguer, R., and Cerdá, X. 2007b. Synchrony between fruit maturation and effective disperser’s foraging activity increases seed protection against seed predator. Proc. R. Soc. Lond. B 274:2515–2522.CrossRefGoogle Scholar
  11. Cerdá, X. and Retana, J. 2000. Alternative strategies by thermophilic ants to cope with extreme heat: Individual versus colony level traits. Oikos 89:155–163.CrossRefGoogle Scholar
  12. Cerdá, X., Retana, J., Bosch, J., and Alsina, A. 1989. Exploitation of food resources by the ant Tapinoma nigerrimum (Hym., Formicidae). Acta Oecol. 10:419–429.Google Scholar
  13. Cerdá, X., Retana, J., and Cros, S. 1997. Thermal disruption of transitive hierarchies in Mediterranean ant communities. J. Anim. Ecol. 66:363–374.CrossRefGoogle Scholar
  14. Cerdá, X., Retana, J., and Cros, S. 1998a. Critical thermal limits in Mediterranean ant species: Functional trade-off between mortality risk and foraging performance. Funct. Ecol. 12:45–55.CrossRefGoogle Scholar
  15. Cerdá, X., Retana, J., and Cros, S. 1998b. Prey size reverses the outcome of interference interactions of scavenger ants. Oikos 82:99–110.CrossRefGoogle Scholar
  16. Cerdá, X., Angulo, E., Boulay, R., and Lenoir, A. 2009. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63:551–562.CrossRefGoogle Scholar
  17. Collett, T. S., Dillmann, E., Giger, A., and Wehner, R. 1992. Visual landmarks and route following in desert ants. J. Comp. Physiol. A 170:435–442.CrossRefGoogle Scholar
  18. Cros, S., Cerdá, X., and Retana, J. 1997. Spatial and temporal pattern variations in the activity patterns of Mediterranean ant communities. Ecoscience 4:269–278.Google Scholar
  19. Detrain, C. and Deneubourg, J.-L. 2002. Complexity of environment and parsimony of decision rules in insect societies. Biol. Bull. 202:268–274.PubMedCrossRefGoogle Scholar
  20. Fresneau, D. 1985. Individual foraging and path fidelity in a Ponerine ant. Insect. Soc. 32:109–116.CrossRefGoogle Scholar
  21. Gehring, W. J. and Wehner, R. 1995. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc. Natl. Acad. Sci. U.S.A. 92:2994–2998.PubMedCrossRefGoogle Scholar
  22. Hölldobler, B. 1971. Recruitment behavior in Camponotus socius (Hym. Formicidae). J. Comp. Physiol. A 75:123–142.Google Scholar
  23. Hölldobler, B. and Wilson, E. O. 1990. The Ants. The Belknap Press of Harvard University, Cambridge, MA. 732 pp.Google Scholar
  24. Jaffe, K. 1980. Theoretical analysis of the communication system for chemical mass recruitment in ants. J. Theor. Biol. 84:589–609.PubMedCrossRefGoogle Scholar
  25. Kohl, E., Hölldobler, B., and Bestmann, H. 2001. Trail and recruitment pheromones in Camponotus socius (Hymenoptera: Formicidae). Chemoecology 11:67–73.CrossRefGoogle Scholar
  26. Lebrun, E. G. 2005. Who is the top dog in ant communities? Resources, parasitoids, and multiple competitive hierarchies. Oecologia 142:643–652.PubMedCrossRefGoogle Scholar
  27. Lenoir, A., Nowbahari, E., Quérard, L., Pondicq, N., and Delalande, C. 1990. Habitat exploitation and intercolonial relationship in the ant Cataglyphis cursor (hymenoptera: Formicidae). Acta Oecol. 11:3–18.Google Scholar
  28. Lenoir, A., Aron, S., Cerdá, X., and Hefetz, A. 2009. Cataglyphis desert ants: A good model for evolutionary biology in Darwin’s anniversary year — A review. Isr. J. Entomol. 39:1–32.Google Scholar
  29. Lenoir, A., Benoist, A., Hefetz, A., Francke, W., Cerdá, X., and Boulay, R. 2011. Trail-following behaviour in two Aphaenogaster ants. Chemoecology 21:83–88.CrossRefGoogle Scholar
  30. Lessard, J.-P., Dunn, R. R., and Sanders, N. J. 2009. Temperature-mediated coexistence in temperate forest ant communities. Insect. Soc. 56:149–156.CrossRefGoogle Scholar
  31. Lighton, J. R. B. and Feener, D. H. 1989. Water-loss rate and cuticular permeability in foragers of the desert ant pogonomyrmex rugosus. Physiol. Zool. 62:1232–1256.Google Scholar
  32. Morgan, E. D. 2009. Trail pheromones of ants. Physiol. Entomol. 34:1–17.CrossRefGoogle Scholar
  33. Pavan, M. and Trave, R. 1958. Étude sur les Formicidae. IV. Sur le venin du Dolichodéride Tapinoma nigerrimum Nyl. Insect. Soc. 5:299–308.CrossRefGoogle Scholar
  34. R Development Core Team 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.Google Scholar
  35. Retana, J. and Cerdá, X. 2000. Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123:436–444.CrossRefGoogle Scholar
  36. Ruano, F., Tinaut, A., and Soler, J. J. 2000. High surface temperatures select for individual foraging in ants. Behav. Ecol. 11:396–404.CrossRefGoogle Scholar
  37. Sanders, N. J. and Gordon, D. 2003. Resource-dependent interactions and the organization of desert ant communities. Ecology 84:1024–1031.CrossRefGoogle Scholar
  38. Savolainen, R. and Vepsäläinen, K. 1989. Niche differentiation of ant species within territories of the wood ant Formica polyctena. Oikos 56:3–16.CrossRefGoogle Scholar
  39. Simon, T. and Hefetz, A. 1991. Trail-following responses of Tapinoma simrothi (Formicidae: Dolichoderinae) to pygidial gland extracts. Insect. Soc. 38:17–25.CrossRefGoogle Scholar
  40. Stefan, S. and Wehner, R. 2012. Leg allometry in ants: Extreme long-leggedness in thermophilic species. Arthropod Struct. Dev. 41:1–77.Google Scholar
  41. Torres, J. A. 1984. Niches and coexistence of ant communities in Puerto Rico: Repeated patterns. Biotropica 16:284–295.CrossRefGoogle Scholar
  42. Traniello, J. F. A. 1989. Foraging strategies of ants. Annu. Rev. Entomol. 34:191–210.CrossRefGoogle Scholar
  43. van Oudenhove, L., Billoir, E., Boulay, R., Bernstein, C., and Cerdá, X. 2011. Temperature limits trail following behaviour through pheromone decay in ants. Naturwissenschaften 98:1009–1017.PubMedCrossRefGoogle Scholar
  44. Vander Meer, R. 2012. Ants: The supreme soil manipulators. J. Chem. Ecol. this issue.Google Scholar
  45. Wehner, R., Harkness, R. D., and Schmid-Hempel, P. 1983. pp. 79, Foraging strategies in individually searching ants Cataglyphis bicolor (Hymenoptera; Formicidae). Akad Wiss Literat, Mainz, Germany.Google Scholar
  46. Wilson, E. O. 1971. The Insect Societies. Belknap University Press, Cambridge.Google Scholar
  47. Wittman, S. E., Sanders, N. J., Ellison, A. M., Jules, E. S., Ratchford, J. S., and Gotelli, N. J. 2010. Species interactions and thermal constraints on ant community structure. Oikos 119:551–559.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Louise van Oudenhove
    • 1
    • 2
    • 3
    • 4
    Email author
  • Raphaël Boulay
    • 4
    • 5
  • Alain Lenoir
    • 6
  • Carlos Bernstein
    • 1
    • 2
    • 3
  • Xim Cerda
    • 4
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1LyonFrance
  3. 3.CNRS, UMR5558, Laboratoire de Biométrie et Biologie ÉvolutiveVilleurbanneFrance
  4. 4.Estación Biológica de Doñana, CSICSevillaSpain
  5. 5.Depto. Biología Animal. Facultad de CienciasUniversidad de GranadaGranadaSpain
  6. 6.CNRS UMR7261, Institut de Recherche de Biologie de l’Insecte, Faculté des Sciences de TechniquesUniversité François RabelaisToursFrance

Personalised recommendations