Journal of Chemical Ecology

, Volume 38, Issue 6, pp 768–784 | Cite as

The Chemical Ecology of Soil Organic Matter Molecular Constituents

  • Myrna J. SimpsonEmail author
  • André J. Simpson
Review Article


Soil organic matter (OM) contains vast stores of carbon, and directly supports microbial, plant, and animal life by retaining essential nutrients and water in the soil. Soil OM plays important roles in biological, chemical, and physical processes within the soil, and arguably plays a major role in maintaining long-term ecological stability in a changing world. Despite its importance, there is a great deal still unknown about soil OM chemical ecology. The development of sophisticated analytical methods have reshaped our understanding of soil OM composition, which is now believed to be comprised of plant and microbial products at various stages of decomposition. The methods also have recently been applied to study environmental change in various settings and have provided unique insight with respect to soil OM chemical ecology. The goal of this review is to highlight the methods used to characterize soil OM structure, source, and degradation that have enabled precise observations of OM and associated ecological shifts. Although the chemistry of soil OM is important in its overall fate in ecosystems, the studies conducted to date suggest that ecological function is not defined by soil OM chemistry alone. The long-standing questions regarding soil OM stability and recalcitrance will likely be answered when several molecular methods are used in tandem to closely examine structure, source, age, degradation stage, and interactions of specific OM components in soil.


Nuclear magnetic resonance Mass spectrometry Isotopic analysis Organic matter biomarkers Lignin Cutin Suberin Microbial-derived compounds Plant-derived compounds 



The Natural Science and Engineering Research Council (NSERC) of Canada is thanked for financial support.


  1. Almendros, G., Dorado, J., Gonzalez-Vila, F. J., Blanco, M. J., and Lankes, U. 2000. C-13 NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol. Biochem. 32:793–804.Google Scholar
  2. Amelung, W., Cheshire, M. V., and Guggenberger, G. 1996. Determination of neutral and acidic sugars from soil by capillary gas liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biol. Biochem. 28:1631–1639.Google Scholar
  3. Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R. 2009. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100:155–250.Google Scholar
  4. Baker, E. A. 1982. Chemistry and morphology of plant epicuticular waxes, pp. 139–165, in D. F. Cutler, K. L. Alvin, and C. E. Price (eds.), The Plant Cuticle. Academic, London, UK.Google Scholar
  5. Baldock, J. A. and Preston, C. M. 1995. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance, pp. 89–117, in W. W. McFee and J. M. Kelly (eds.), Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
  6. Baldock, J. A. and Skjemstad, J. O. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31:697–710.Google Scholar
  7. Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world. Europ. J. Soil Sci. 47:151–163.Google Scholar
  8. Baumann, K., Marschner, P., Smernik, R. J., and Baldock, J. A. 2009. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol. Biochem. 41:1966–1975.Google Scholar
  9. Beer, C. 2008. Soil science: The Arctic carbon count. Nature Geosci. 1:569–570.Google Scholar
  10. Beyer, L., Sorge, C., Blume, H.-P., and Schulten, H.-R. 1995. Soil organic matter composition and transformation in gelichistosols of coastal continental Antarctica. Soil Biol. Biochem. 27:1279–1288.Google Scholar
  11. Beyer, L., Knicker, H., Blume, H. P., Bolter, M., Vogt, B., and Schneider, D. 1997. Soil organic matter of suggested spodic horizons in relic ornithogenic soils of coastal continental Antarctica (Casey Station, Wilkes Land) in comparison with that of spodic soil horizons in Germany. Soil Sci. 162:518–527.Google Scholar
  12. Beyer, L., White, D. M., and Bölter, M. 2001. Soil organic matter composition, transformation, and microbial colonization of gelicpodzols in the coastal region of east Antarctica. Aust. J. Soil Res. 39:543–563.Google Scholar
  13. Bianchi, G. 1995. Plant waxes, pp. 175–222, in R. J. Hamilton (ed.), Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, Scotland.Google Scholar
  14. Biasi, C., Rusalimova, O., Meyer, H., Kaiser, C., Wanek, W., Barsukov, P., Junger, H., and Richter, A. 2005. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun. Mass Spectrom. 19:1401–1408.PubMedGoogle Scholar
  15. Billings, S. A., Lichter, J., Ziegler, S. E., Hungate, B. A., and Richter, D. D. B. 2010. A call to investigate drivers of soil organic matter retention vs. mineralization in a high CO2 world. Soil Biol. Biochem. 42:665–668.Google Scholar
  16. Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., and Kuzyakov, Y. 2011. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization. Soil Biol. Biochem. 43:159–166.Google Scholar
  17. Bull, I. D., Van Bergen, P. F., Nott, C. J., Poulton, P. R., and Evershed, R. P. 2000. Organic geochemical studies of soils from the rothamsted classical experiments-V. The fate of lipids in different long-term experiments. Org. Geochem. 31:389–408.Google Scholar
  18. Carbone, M. S., Czimczik, C. I., Mcduffee, K. E., and Trumbore, S. E. 2007. Allocation and residence time of photosynthetic products in a boreal forest using a low-level (14)C pulse-chase labeling technique. Glob. Change Biol. 13:466–477.Google Scholar
  19. Chefetz, B. and Xing, B. 2009. Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: A review. Environ. Sci. Technol. 43:1680–1688.PubMedGoogle Scholar
  20. Christensen, B. T., Olesen, J. E., Hansen, E. M., and Thomsen, I. K. 2011. Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover. Soil Biol. Biochem. 43:1961–1967.Google Scholar
  21. Clemente, J. S., Simpson, A. J., and Simpson, M. J. 2011. Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org. Geochem. 42:1169–1180.Google Scholar
  22. Clemente, J. S., Gregorich, E. G., Simpson, A. J., Kumar, R., Courtier-Murias, D., and Simpson, M. J. 2012. Comparison of NMR methods for the analysis of organic matter composition from soil density and particle fractions. Environ. Chem. 9:97–107.Google Scholar
  23. Crow, S. E., Lajtha, K., Filley, T. R., Swanston, C. W., Bowden, R. D., and Caldwell, B. A. 2009. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change. Glob. Change Biol. 15:2003–2019.Google Scholar
  24. Czimczik C. I., and Trumbore S. E. 2007. Short-term controls on the age of microbial carbon sources in boreal forest soils. J. Geophys. Res-Biogeo. 112, G03001, p 8. doi: 10.1029/2006JG000389.
  25. Czimczik, C. I., Treseder, K. K., Carbone, M. S., and Trumbore, S. E. 2005. Radiocarbon - a low-impact tool to study nutrient transport by soil fungi under field conditions. New Phytol. 166:595–600.PubMedGoogle Scholar
  26. Dai, X. Y., Ping, C. L., Candler, R., Haumaier, L., and Zech, W. 2001. Characterization of soil organic matter fractions of tundra soils in arctic Alaska by carbon-13 nuclear magnetic resonance spectroscopy. Soil Sci. Soc. Am. J. 65:87–93.Google Scholar
  27. Dai, X. Y., Ping, C. L., and Michaelson, G. J. 2002. Characterizing soil organic matter in arctic tundra soils by different analytical approaches. Org. Geochem. 33:407–419.Google Scholar
  28. Davidson, E. A. and Janssens, I. A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173.PubMedGoogle Scholar
  29. Deshmukh, A. P., Simpson, A. J., Hadad, C. M., and Hatcher, P. G. 2005. Insights into the structure of cutin and cutan from Agave americana leaf cuticle using HRMAS NMR spectroscopy. Org. Geochem. 36:1072–1085.Google Scholar
  30. Dijkstra, F. A. 2009. Modeling the flow of 15N after a 15N pulse to study long-term N dynamics in a semiarid grassland. Ecology 90:2171–2182.PubMedGoogle Scholar
  31. Dijkstra, F. A., Pendall, E., Mosier, A. R., King, J. Y., Milchunas, D. G., and Morgan, J. A. 2008. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland. Funct. Ecol. 22:975–982.Google Scholar
  32. Dijkstra, F. A., Blumenthal, D., Morgan, J. A., Lecain, D. R., and Follett, R. F. 2010. Elevated CO2 effects on semi-arid grassland plants in relation to water availability and competition. Funct. Ecol. 24:1152–1161.Google Scholar
  33. Dijkstra, P., Dalder, J. J., Selmants, P. C., Hart, S. C., Koch, G. W., Schwartz, E., and Hungate, B. A. 2011. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biol. Biochem. 43:1848–1857.Google Scholar
  34. Dümig, A., Knicker, H., Schad, P., Rumpel, C., Dignac, M. F., and Kögel-Knabner, I. 2009. Changes in soil organic matter composition are associated with forest encroachment into grassland with long-term fire history. Europ. J. Soil Sci. 60:578–589.Google Scholar
  35. Eglinton, T. I., Aluwihare, L. I., Bauer, J. E., Druffel, E. R. M., and Mcnichol, A. P. 1996. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal. Chem. 68:904–912.PubMedGoogle Scholar
  36. Fang, C., Smith, P., Moncrieff, J. B., and Smith, J. U. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59.PubMedGoogle Scholar
  37. Feng, X. and Simpson, M. J. 2007. The distribution and degradation of biomarkers in Alberta grassland soil profiles. Org. Geochem. 38:1558–1570.Google Scholar
  38. Feng X., and Simpson M. J. 2008. Temperature responses of individual soil organic matter components. J. Geophys. Res. Biogeosci. 113, G03036. doi: 10.1029/2008JG000743.
  39. Feng, X. and Simpson, M. J. 2009. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol. Biochem. 41:804–812.Google Scholar
  40. Feng, X. and Simpson, M. J. 2011. Molecular-level methods for monitoring soil organic matter responses to global climate change. J. Environ. Monitor. 13:1246–1254.Google Scholar
  41. Feng, X., Simpson, A. J., and Simpson, M. J. 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Org. Geochem. 36:1553–1566.Google Scholar
  42. Feng, X., Simpson, A. J., Wilson, K. P., Dudley Williams, D., and Simpson, M. J. 2008. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geosci. 1:836–839.Google Scholar
  43. Feng, X., Simpson, A. J., Schlesinger, W. H., and Simpson, M. J. 2010. Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest. Glob. Change Biol. 16:2104–2116.Google Scholar
  44. Feng, X., Hills, K. M., Simpson, A. J., Whalen, J. K., and Simpson, M. J. 2011a. The role of biodegradation and photo-oxidation in the transformation of terrigenous organic matter. Org. Geochem. 42:262–274.Google Scholar
  45. Feng, X., Simpson, A. J., Gregorich, E. G., Elberling, B., Hopkins, D. W., Sparrow, A. D., Novis, P. M., Greenfield, L. G., and Simpson, M. J. 2011b. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley. Antarctica. Geochim. Cosmochim. Acta 74:6485–6498.Google Scholar
  46. Feng, X., Xu, Y., Jaffè, R., Schlesinger, W. H., and Simpson, M. J. 2011c. Turnover rates of hydrolysable aliphatic lipids in Duke Forest soils determined by compound specific 13C isotopic analysis. Org. Geochem. 41:573–579.Google Scholar
  47. Fox, P. A., Carter, J., and Farrimond, P. 1998. Analysis of bacteriohopanepolyols in sediment and bacterial extracts by high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Sp. 12:609–612.Google Scholar
  48. Frey, S. D., Drijber, R., Smith, H., and Melillo, J. 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40:2904–2907.Google Scholar
  49. Froberg, M., Berggren, D., Bergkvist, B., Bryant, C., and Knicker, H. 2003. Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates. Geoderma 113:311–322.Google Scholar
  50. Frostegård, A. and Bååth, E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fert. Soils 22:59–65.Google Scholar
  51. Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. 1998. Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Org. Geochem. 29:811–819.Google Scholar
  52. Glaser, B., Turrion, M.-B., and Alef, K. 2004. Amino surgars and muramic acid - biomarkers for soil microbial community structure analysis. Soil Biol. Biochem. 26:399–407.Google Scholar
  53. Glaser, B., Benesch, M., Dippold, M., and Zech, W. 2012. In situ 15N and 13C labelling of indigenous and plantation tree species in a tropical mountain forest (Munessa, Ethiopia) for subsequent litter and soil organic matter turnover studies. Org. Geochem. 42:1461–1469.Google Scholar
  54. Gonçalves, C. N., Dalmolin, R. S. D., Dick, D. P., Knicker, H., Klamt, E., and Kogel-Knabner, I. 2003. The effect of 10 % HF treatment on the resolution of CPMAS C-13 NMR spectra and on the quality of organic matter in Ferralsols. Geoderma 116:373–392.Google Scholar
  55. Goñi, M. A., Nelson, B., Blanchette, R. A., and Hedges, J. I. 1993. Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochim. Cosmochim. Acta 57:3985–4002.Google Scholar
  56. Harwood, J. L. and Russell, N. J. 1984. Lipids in Plants and Microbes. George Allen and Unwin, London, UK, London.Google Scholar
  57. Hatcher, P. G., Dria, K. J., Kim, S., and Frazier, S. W. 2001. Modern analytical studies of humic substances. Soil Sci. 166:770–794.Google Scholar
  58. Hatton, P. J., Kleber, M., Zeller, B., Moni, C., Plante, A. F., Townsend, K., Gelhaye, L., Lajtha, K., and Derrien, D. 2012. Transfer of litter-derived N to soil mineral-organic associations: Evidence from decadal 15 N tracer experiments. Org. Geochem. 42:1489–1501.Google Scholar
  59. Haumaier, L. 2010. Benzene polycarboxylic acids—A ubiquitous class of compounds in soils. J. Plant Nutr. Soil Sci. 173:727–736.Google Scholar
  60. Hedges, J. I. and Mann, D. C. 1979. The characterization of plant tissues by their lignin oxidation products. Geochim. Cosmochim. Acta 43:1803–1807.Google Scholar
  61. Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H. 1988. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study. Geochim. Cosmochim. Acta 52:2717–2726.Google Scholar
  62. Hedges, J. I., Eglinton, G., Hatcher, P. G., Kirchman, D. L., Arnosti, C., Derenne, S., Evershed, R. P., Kögel-Knabner, I., De Leeuw, J. W., Littke, R., et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31:945–958.Google Scholar
  63. Holloway, P. J. 1982. The chemical composition of plant cutins, pp. 45–85, in D. F. Cutler, K. L. Alvin, and C. E. Price (eds.), The Plant Cuticle. Academic, London, UK.Google Scholar
  64. Holloway, P. J. and Deas, A. H. B. 1973. Epoxyoctadecanoic acids in plant cutins and suberins. Phytochemistry 12:1721–1735.Google Scholar
  65. Hopmans, E. C., Weijers JWH, Schefuβ, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten, S. 2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sc. Lett. 224:107–116.Google Scholar
  66. Hou, J., Huang, Y., Brodsky, C., Alexandre, M. R., Mcnichol, A. P., King, J. W., Hu, F. S., and SHEN, J. 2010. Radiocarbon dating of individual lignin phenols: A new approach for establishing chronology of late quaternary lake sediments. Anal. Chem. 82:7119–7126.PubMedGoogle Scholar
  67. Howard, D. M. and Howard, P. J. A. 1993. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol. Biochem. 25:1537–1546.Google Scholar
  68. Hu, W.-G., Mao, J., Xing, B., and Schmidt-Rohr, K. 2000. Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ. Sci. Technol. 34:530–534.Google Scholar
  69. Huygens, D., Boeckx, P., Templer, P., Paulino, L., van Cleemput, O., Oyarzún, C., Müller, C., and Godoy, R. 2008. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geosci. 1:543–548.Google Scholar
  70. Ingalls, A. E., Ellis, E. E., Santos, G. M., Mcduffee, K. E., Truxal, L., Keil, R. G., and Druffel, E. R. M. 2010. HPLC purification of higher plant-dervied lignin phenols for compound specific radiocarbon analysis. Anal. Chem. 82:8931–8938.Google Scholar
  71. Innes, H. E., Bishop, A. N., Head, I. M., and Farrimond, P. 1997. Preservation and diagenesis of hopanoids in Recent lacustrine sediments of Priest Pot. England. Org. Geochem. 26:565–575.Google Scholar
  72. Kelleher, B. P. and Simpson, A. J. 2006. Humic substances in soils: Are they really chemically distinct? Environ. Sci. Technol. 40:4605–4611.PubMedGoogle Scholar
  73. Kelleher, B. P., Simpson, M. J., and Simpson, A. J. 2006. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim. Cosmochim. Acta 70:4080–4094.Google Scholar
  74. Kingery, W. L., Simpson, A. J., Hayes, M. H. B., Locke, M. A., and Hicks, R. P. 2000. The application of multidimensional NMR to the study of soil humic substances. Soil Sci. 165:483–494.Google Scholar
  75. Kirschbaum, M. U. 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27:753–760.Google Scholar
  76. Kleber, M. 2010. What is recalcitrant soil organic matter? Environ. Chem. 7:320–332.Google Scholar
  77. Kleber, M., Nico, P. S., Plante, A., Filley, T., Kramer, M., Swanston, C., and Sollins, P. 2011. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Change Biol. 17:1097–1107.Google Scholar
  78. Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301.PubMedGoogle Scholar
  79. Kögel-Knabner, I. 2000. Analytical approaches for characterizing soil organic matter. Org. Geochem. 31:609–625.Google Scholar
  80. Kögel-Knabner, I. 2002. The macromolecular organic composition of Plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34:139–162.Google Scholar
  81. Kolattukudy, P. E. and Espelie, K. E. 1989. Chemistry, biochemistry, and function of suberin and associated waxes, pp. 304–367, in J. W. Rowe (ed.), Natural Products of Woody Plants. Springer, Berlin, Germany.Google Scholar
  82. Kramer, C. and Gleixner, G. 2008. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 40:425–433.Google Scholar
  83. Kramer, C., Trumbore, S., Fröberg, M., Cisneros Dozal, L. M., Zhang, D., Xu, X., Santos, G. M., and Hanson, P. J. 2010. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol. Biochem. 42:1028–1037.Google Scholar
  84. Kuzyakov, Y. and Bol, R. 2005. Three sources of CO2 efflux from soil partitioned by 13C natural abundance in an incubation study. Rapid Commun. Mass Sp. 19:1417–1423.Google Scholar
  85. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627.PubMedGoogle Scholar
  86. Leifeld, J. and Fuhrer, J. 2005. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry 75:433–453.Google Scholar
  87. Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U., and Kandeler, E. 2008. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 40:1496–1505.Google Scholar
  88. Lichter, J., Billings, S. A., Ziegler, S. E., Gaindh, D., Ryals, R., Finzi, A. C., Jackson, R. B., Stemmler, E. A., and Schlesinger, W. H. 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Glob. Change Biol. 14:2910–2922.Google Scholar
  89. Malcolm, R. L. 1989. Applications of solid-state 13C NMR spectroscopy to geochemical studies of humic substances, pp. 340–372, in M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, and R. S. Swift (eds.), Humic Substances II. In Search of Structure. Wiley, New York, USA.Google Scholar
  90. Mao, J. D., Hu, W. G., Schmidt-Rohr, K., Davies, G., Ghabbour, E. A., and Xing, B. 2000. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 64:873–884.Google Scholar
  91. Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P. M., Hamer, U., Heim, A., Jandl, G., Ji, R., et al. 2008. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 171:91–110.Google Scholar
  92. Matsumoto, K., Kawamura, K., Uchida, M., and Shibata, Y. 2007. Radiocarbon content and stable carbon isotopic ratios of individual fatty acids in subsurface soil: Implication for selective microbial degradation and modification of soil organic matter. Geochem. J. 41:483–492.Google Scholar
  93. Mead, R. N. and Goñi, M. A. 2008. Matrix protected organic matter in a river dominated margin: A possible mechanism to sequester terrestrial organic matter? Geochim. Cosmochim. Acta 72:2673–2686.Google Scholar
  94. Mendez-Millan, M., Dignac, M. F., Rumpel, C., and Derenne, S. 2010. Quantitative and qualitative analysis of cutin in maize and a maize-cropped soil: Comparison of CuO oxidation, transmethylation and saponification methods. Org. Geochem. 41:187–191.Google Scholar
  95. Mendez-Millan, M., Dignac, M. F., Rumpel, C., and Derenne, S. 2011. Can cutin and suberin biomarkers be used to trace shoot and root-derived organic matter? A molecular and isotopic approach. Biogeochemistry 106:23–38.Google Scholar
  96. Mendez-Millan, M., Dignac, M. F., Rumpel, C., Rasse, D. P., Bardoux, G., and Derenne, S. 2012. Contribution of maize root derived C to soil organic carbon throughout an agricultural soil profile assessed by compound specific 13C analysis. Org. Geochem. 42:1502–1511.Google Scholar
  97. Morgan, J. A., Lecain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., and West, M. 2011. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476:202–205.PubMedGoogle Scholar
  98. O’Brien S. L., Jastrow J. D., Mcfarlane K. J., Guilderson T. P., and Gonzalez-Meler M. A. 2012. Decadal cycling within long-lived carbon pools revealed by dual isotopic analysis of mineral-associated soil organic matter. Biogeochemistry (in press).Google Scholar
  99. Otto, A. and Simpson, M. J. 2005. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry 74:377–409.Google Scholar
  100. Otto, A. and Simpson, M. J. 2006a. Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil. Biogeochemistry 80:121–142.Google Scholar
  101. Otto, A. and Simpson, M. J. 2006b. Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Org. Geochem. 37:385–407.Google Scholar
  102. Otto, A. and Simpson, M. J. 2007. Analysis of soil organic matter biomarkers by sequential chemical degradation and gas chromatography - mass spectrometry. J. Sep. Sci. 30:272–282.PubMedGoogle Scholar
  103. Otto, A., Shunthirasingham, C., and Simpson, M. J. 2005. A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Org. Geochem. 36:425–448.Google Scholar
  104. Otto, A., Gondokusumo, R., and Simpson, M. J. 2006. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta. Canada. Appl. Geochem. 21:166–183.Google Scholar
  105. Pautler, B. G., Simpson, A. J., Mcnally, D. J., Lamoureux, S. F., and Simpson, M. J. 2010. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ. Sci. Technol. 44:4076–4082.PubMedGoogle Scholar
  106. Pedersen, J. A., Simpson, M. A., Bockheim, J. G., and Kumar, K. 2011. Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy. Org. Geochem. 42:947–954.Google Scholar
  107. Peterse, F., Nicol, G. W., Schouten, S., and Damste, J. S. S. 2010. Influence of soil pH on the abundance and distribution of core and intact polar lipid-derived branched GDGTs in soil. Org. Geochem. 41:1171–1175.Google Scholar
  108. Pines A., Waugh J. S., and Gibby M. G. 1972. Proton-enhanced nuclear induction spectroscopy C-13 chemical shielding anisotropy in some organic solids. Chem. Phys. Lett. 56:1776–1777.Google Scholar
  109. Preston, C., Trofymow, J., Sayer, B., and Niu, J. 1997. 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can. J. Bot. 75:1601–1613.Google Scholar
  110. Providoli, I., Bugmann, H., Siegwolf, R., Buchmann, N., and Schleppi, P. 2006. Pathways and dynamics of 15NO3- and 15NH4+ applied in a mountain Picea abies forest and in a nearby meadow in central Switzerland. Soil Biol. Biochem. 38:1645–1657.Google Scholar
  111. Rethemeyer, J., Kramer, C., Gleixner, G., Wiesenberg, G. L. B., Schwark, L., Andersen, N., Nadeau, M. J., And Grootes, P. M., Andersen, N., Nadeau, M. J., and Grootes, P. M. 2004. Complexity of soil organic matter: AMS 14C analysis of soil lipid fractions and individual compounds. Radiocarbon 46:465–473.Google Scholar
  112. Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H., andersen, N., Nadeau, M. J., and Grootes, P. M. 2005. Transformation of organic matter in agricultural soils: Radiocarbon concentration versus soil depth. Geoderma 128:94–105.Google Scholar
  113. Rumpel, C., Knicker, H., Kogel-Knabner, I., Skjemstad, J. O., and Huttl, R. F. 1998. Types and chemical composition of organic matter in reforested lignite-rich mine soils. Geoderma 86:123–142.Google Scholar
  114. Rumpel, C., Rabia, N., Derenne, S., Quenea, K., Eusterhues, K., Kãgel-Knabner, I., and Mariotti, A. 2006. Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Org. Geochem. 37:1437–1451.Google Scholar
  115. Salloum, M. J., Chefetz, B., and Hatcher, P. G. 2002. Phenanthrene sorption by aliphatic-rich natural organic matter. Environ. Sci. Technol. 36:1953–1958.PubMedGoogle Scholar
  116. Schlesinger, W. H. 1991. Biogeochemistry: An Analysis of Global Change. Academic, San Diego, California, USA.Google Scholar
  117. Schmidt, M. W. I., Knicker, H., Hatcher, P. G., and Kögel-Knabner, I. 1997. Improvement of C-13 and N-15 CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10 % hydrofluoric acid. Europ. J. Soil Sci. 48:319–328.Google Scholar
  118. Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., et al. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.PubMedGoogle Scholar
  119. Shunthirasingham, C. and Simpson, M. J. 2006. Investigation of bacterial hopanoid inputs to soils from Western Canada. Appl. Geochem. 21:964–976.Google Scholar
  120. Simoneit, B. R. T. 2002. Biomass burning - A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17:129–162.Google Scholar
  121. Simoneit, B. R. T. 2005. A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. Mass Sp. Rev. 24:719–765.Google Scholar
  122. Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., and Cass, G. R. 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atm. Environ. 33:173–182.Google Scholar
  123. Simpson, A. 2001. Multidimensional solution state NMR of humic substances: A practical guide and review. Soil Sci. 166:795–809.Google Scholar
  124. Simpson, A. J. 2002. Determining the molecular weight, aggregation, structures and interactions of natural organic matter using diffusion ordered spectroscopy. Magn. Reson. Chem. 40:S72–S82.Google Scholar
  125. Simpson, M. J. and Hatcher, P. G. 2004. Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C nuclear magnetic resonance spectroscopy. Org. Geochem. 35:923–935.Google Scholar
  126. Simpson, M. J. and Johnson, P. C. E. 2006. Identification of mobile aliphatic sorptive domains in soil humin by solid-state 13 C nuclear magnetic resonance. Environ. Toxicol. Chem. 25:52–57.PubMedGoogle Scholar
  127. Simpson, M. J. and Mckelvie, J. R. 2009. Environmental metabolomics: New insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal. Bioanal. Chem 394:137–149.PubMedGoogle Scholar
  128. Simpson, A. J. and Simpson, M. J. 2009. NMR of Natural Organic Matter, pp. 589–650, in B. Xing, N. Senesi, and P.-M. Huang (eds.), Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. Wiley, New York, USA.Google Scholar
  129. Simpson, A. J., Burdon, J., Graham, C. L., Hayes, M. H. B., Spencer, N., and Kingery, W. L. 2001a. Interpretation of heteronuclear and multidimensional NMR spectroscopy of humic substances. Europ. J. Soil Sci. 52:495–509.Google Scholar
  130. Simpson, A. J., Kingery, W. L., Spraul, M., Humpfer, E., Dvortsak, P., and Kerssebaum, R. 2001b. Separation of structural components in soil organic matter by diffusion ordered spectroscopy. Environ. Sci. Technol. 35:4421–4425.PubMedGoogle Scholar
  131. Simpson, A. J., Kingery, W. L., Hayes, M. H., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Godejohann, M., and Hofmann, M. 2002a. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89:84–88.PubMedGoogle Scholar
  132. Simpson, A. J., Salloum, M. J., Kingery, W. L., and Hatcher, P. G. 2002b. Improvements in the two-dimensional nuclear magnetic resonance spectroscopy of humic substances. J. Environ. Qual. 31:388–392.PubMedGoogle Scholar
  133. Simpson, A. J., Kingery, W. L., and Hatcher, P. G. 2003. The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environ. Sci. Technol. 37:337–342.PubMedGoogle Scholar
  134. Simpson, A. J., Lefebvre, B., Moser, A., Williams, A., Larin, N., Kvasha, M., Kingery, W. L., and Kelleher, B. 2004. Identifying residues in natural organic matter through spectral prediction and pattern matching of 2D NMR datasets. Magn. Reson. Chem. 42:14–22.PubMedGoogle Scholar
  135. Simpson, A. J., Simpson, M. J., Kingery, W. L., Lefebvre, B. A., Moser, A., Williams, A. J., Kvasha, M., and Kelleher, B. P. 2006. The application of1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir 22:4498–4503.PubMedGoogle Scholar
  136. Simpson, A. J., Simpson, M. J., Smith, E., and And Kelleher, B. P. 2007a. Microbially derived inputs to soil organic matter: Are current estimates too low? Environ. Sci. Technol. 41:8070–8076.PubMedGoogle Scholar
  137. Simpson, A. J., Song, G., Smith, E., Lam, B., Novotny, E. H., and Hayes, M. H. B. 2007b. Unraveling the structural components of soil humin by use of solution-state nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 41:876–883.PubMedGoogle Scholar
  138. Simpson, M. J., Otto, A., and Feng, X. 2008. Comparison of solid-state carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci. Soc. Am. J. 72:268–276.Google Scholar
  139. Simpson, A. J., Mcnally, D. J., and Simpson, M. J. 2011. NMR spectroscopy in environmental research: From molecular interactions to global processes. Prog. Nucl. Mag. Res. Sp. 58:97–175.Google Scholar
  140. Sjögersten, S., Turner, B. L., Mahieu, N., Condron, L. M., and Wookey, P. A. 2003. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob. Change Biol. 9:759–772.Google Scholar
  141. Sollins, P., Kramer, M. G., Swanston, C., Lajtha, K., Filley, T., Aufdenkampe, A. K., Wagai, R., and Bowden, R. D. 2009. Sequential density fractionation across soils of contrasting mineralogy: Evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry 96:209–231.Google Scholar
  142. Song, G., Novotny, E. H., Simpson, A. J., Clapp, C. E., and Hayes, M. H. B. 2008. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Europ. J. Soil Sci. 59:505–516.Google Scholar
  143. Sutton, R. and Sposito, G. 2005. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39:9009–9015.PubMedGoogle Scholar
  144. Szumigalski, A. R. and Bayley, S. E. 1996. Decomposition along a bog to rich fen gradient is central Alberta. Canada. Can. J. Bot. 74:573–581.Google Scholar
  145. Talbot, H. M., Watson, D. F., Murrell, J. C., Carter, J. F., and Farrimond, P. 2001. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A 921:175–185.PubMedGoogle Scholar
  146. Talbot, H. M., Watson, D. F., Pearson, E. J., and Farrimond, P. 2003. Diverse biohopanoid compositions of non-marine sediments. Org. Geochem. 34:1353–1371.Google Scholar
  147. Talbot, H. M., Rohmer, M., and Farrimond, P. 2007a. Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spec. 21:880–892.Google Scholar
  148. Talbot, H. M., Rohmer, M., and Farrimond, P. 2007b. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spec. 21:1613–1622.Google Scholar
  149. Talbot, H. M., Summons, R. E., Jahnke, L. L., Cockell, C. S., Rohmer, M., and Farrimond, P. 2008. Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Org. Geochem. 39:232–263.Google Scholar
  150. Tarnocai C., Canadell J. G., Schuur E. A. G., Kuhry P., Mazhitova G., and Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cy. 23, doi: 10.1029/2008GB003327.
  151. Thevenot, M., Dignac, M. F., and Rumpel, C. 2010. Fate of lignins in soils: A review. Soil Biol. Biochem. 42:1200–1211.Google Scholar
  152. Torn, M. S., Biraud, S. C., Still, C. J., Riley, W. J., and Berry, J. A. 2011. Seasonal and interannual variability in 13 C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains. Tellus B 63:181–195.Google Scholar
  153. Trumbore, S. 2006. Carbon respired by terrestrial ecosystems - Recent progress and challenges. Glob. Change Biol. 12:141–153.Google Scholar
  154. Trumbore, S. E. 2009. Radiocarbon and Soil Carbon Dynamics. Annu. Rev. Earth Pl. Sci. 37:47–66.Google Scholar
  155. Trumbore, S. E. and Czimczik, C. I. 2008. Geology - An uncertain future for soil carbon. Science 321:1455–1456.PubMedGoogle Scholar
  156. Tulloch, A. P. 1976. Chemistry of waxes of higher plants, pp. 235–287, in P. E. Kolattukudy (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, Netherlands.Google Scholar
  157. van Bergen, P. F., Bull, I. D., Poulton, P. R., and Evershed, R. P. 1997. Organic geochemical studies of soils from the Rothamsted classical experiments - I. Total lipid extracts, solvent insoluble residues and humic acids from broadbalk wilderness. Org. Geochem. 26:117–135.Google Scholar
  158. Volkman, J. K., Barret, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L., and Gelin, F. 1998. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29:1163–1179.Google Scholar
  159. Weete, J. D. 1976. Algal and fungal waxes, pp. 349–418, in P. E. Kolattukudy (ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, Netherlands.Google Scholar
  160. Weijers, J. W. H., Schouten, S., Spaargaren, O. C., and Sinninghe Damsté, J. S. 2006. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX(86) proxy and the BIT index. Org. Geochem. 37:1680–1693.Google Scholar
  161. Weijers, J. W. H., Schouten, S., Van Den Donker, J. C., Hopmans, E. C., and Sinninghe Damsté, J. S. 2007. Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim. Cosmochim. Acta 71:703–713.Google Scholar
  162. Weijers, J. W. H., Bernhardt, B., Peterse, F., Werne, J. P., Dungait, J. A. J., Schouten, S., and Sinninghe Damsté, J. S. 2011. Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils. Geochim. Cosmochim. Acta 75:3179–3190.Google Scholar
  163. West, A. W., Grant, W. D., and Sparling, G. P. 1987. Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol. Biochem. 19:607–612.Google Scholar
  164. White, D. M., Hodkinson, I. D., Seelen, S. J., and Coulson, S. J. 2007. Characterization of soil carbon from a Svalbard glacier-retreat chronosequence using pyrolysis-GC/MS analysis. J. Anal. Appl. Pyrol. 78:70–75.Google Scholar
  165. Winkler, A., Haumaier, L., and Zech, W. 2001. Variation in hopanoid composition and abundance in forest soils during litter decomposition and humification. Org. Geochem. 32:1375–1385.Google Scholar
  166. Wise, D. H. and Schaefer, M. 1994. Decomposition of leaf litter in a mull beech forest: comparison between canopy and herbaceous species. Pedobiologia 38:269–288.Google Scholar
  167. Xu, Y., Cooke, M. P., Talbot, H. M., and Simpson, M. J. 2009. Bacteriohopanepolyol signatures of bacterial populations in Western Canadian soils. Org. Geochem. 40:79–86.Google Scholar
  168. Yan, B. and Stark, R. E. 2000. Biosynthesis, molecular structure, and domain architecture of potato suberin: A 13 C NMR study using isotopically labeled precursors. J. Agr. Food Chem. 48:3298–3304.Google Scholar
  169. Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. Fert. Soils 29:111–129.Google Scholar
  170. Zhu, C., Weijers, J. W. H., Wagner, T., Pan, J. M., Chen, J. F., and Pancost, R. D. 2011. Sources and distributions of tetraether lipids in surface sediments across a large river-dominated continental margin. Org. Geochem. 42:376–386.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Environmental NMR Centre and Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations