Advertisement

Journal of Chemical Ecology

, Volume 38, Issue 5, pp 525–537 | Cite as

Occurrence of Sarmentosin and Other Hydroxynitrile Glucosides in Parnassius (Papilionidae) Butterflies and Their Food Plants

  • Nanna Bjarnholt
  • Mirosław Nakonieczny
  • Andrzej Kędziorski
  • Diane M. Debinski
  • Stephen F. Matter
  • Carl Erik Olsen
  • Mika Zagrobelny
Article

Abstract

Sequestration of plant secondary metabolites is a widespread phenomenon among aposematic insects. Sarmentosin is an unsaturated γ-hydroxynitrile glucoside known from plants and some Lepidoptera. It is structurally and biosynthetically closely related to cyanogenic glucosides, which are commonly sequestered from food plants and/or de novo synthesized by lepidopteran species. Sarmentosin was found previously in Parnassius (Papilionidae) butterflies, but it was not known how the occurrence was related to food plants or whether Parnassius species could biosynthesize the compound. Here, we report on the occurrence of sarmentosin and related compounds in four different Parnassius species belonging to two different clades, as well as their known and suspected food plants. There were dramatic differences between the two clades, with P. apollo and P. smintheus from the Apollo group containing high amounts of sarmentosin, and P. clodius and P. mnemosyne from the Mnemosyne group containing low or no detectable amounts. This was reflected in the larval food plants; P. apollo and P. smintheus larvae feed on Sedum species (Crassulaceae), which all contained considerable amounts of sarmentosin, while the known food plants of the two other species, Dicentra and Corydalis (Fumariaceae), had no detectable levels of sarmentosin. All insects and plants containing sarmentosin also contained other biosynthetically related hydroxynitrile glucosides in patterns previously reported for plants, but not for insects. Not all findings could be explained by sequestration alone and we therefore hypothesize that Parnassius species are able to de novo synthesize sarmentosin.

Keywords

Parnassius (Papilionidae) Sarmentosin Hydroxynitrile glucosides Cyanogenic glucosides Sequestration Biosynthesis 

Notes

Acknowledgements

We express our thanks to Managing Director and Scientific Board of The Pieniny National Park for official support of this project, and to Dr. Paweł Adamski from Polish Academy of Sciences in Cracow and Mr. Tadeusz Oleś, Apollo breeder from PNPark, for their help in collecting insects for this study.

References

  1. Aldrich, J. R., Carroll, S. P., Lusby, W. R., Thompson, M. J., Kochansky, J. P., and Waters, R. M. 1990. Sapindaceae, cyanolipids, and bugs. J. Chem. Ecol. 16:199–210.CrossRefGoogle Scholar
  2. Bak, S., Paquette, S. M., Morant, M., Rasmussen, A. B., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Hamann, T., Osmani, S., Simonsen, H. T., Perez, R. S., van Hesswijck, T. B., Jørgensen, B., and Møller, B. L. 2006. Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5:309–329.CrossRefGoogle Scholar
  3. Bjarnholt, N. and Møller, B. L. 2008. Hydroxynitrile glucosides. Phytochemistry 69:1947–1961.PubMedCrossRefGoogle Scholar
  4. Bjarnholt, N., Rook, F., Motawia, M. S., Jørgensen, C., Olsen, C. E., Jaroszewski, J. W., Bak, S., and Møller, B. L. 2008. Diversification of an ancient theme: hydroxynitrile glucosides. Phytochemistry 69:1507–1516.PubMedCrossRefGoogle Scholar
  5. Bohlin, T., Tullberg, B. S., and Merilaita, S. 2008. The effect of signal appearance and distance on detection risk in an aposematic butterfly larva (Parnassius apollo). Anim. behav. 76:577–584.CrossRefGoogle Scholar
  6. Braekman, J. C., Daloze, D., and Pasteels, J. M. 1982. Cyanogenic and other glucosides in a neo-guinean bug Leptocoris isolata - possible precursors in its host plant. Biochem. Syst. Ecol. 10:355–364.CrossRefGoogle Scholar
  7. Engler-Chaouat, H. S. and Gilbert, L. E. 2007. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33:25–42.PubMedCrossRefGoogle Scholar
  8. Engler, H. S., Spencer, K. C., and Gilbert, L. E. 2000. Insect metabolism - Preventing cyanide release from leaves. Nature 406:144–145.PubMedCrossRefGoogle Scholar
  9. Franzl, S., Ackermann, I., and Nahrstedt, A. 1989. Purification and characterization of beta-glucosidase (linamarase) from the hemolymph of Zygaena trifolii esper, 1783 (Insecta, Lepidoptera). Experientia 45:712–718.CrossRefGoogle Scholar
  10. Fung, S. Y., Herrebout, W. M., Verpoorte, R., and Fischer, F. C. 1988. Butenolides in small ermine moths, Yponomeuta ssp. (Lepidoptere, Yponomeutidae), and spindle tree, Euonymus europaeus (Celastraceae). J. Chem. Ecol. 14:1099–1111.CrossRefGoogle Scholar
  11. Fung, S. Y., Schripsema, J., and Verpoorte, R. 1990. Alpha, beta-unsaturated gamma-lactones from Sedum telephium roots. Phytochemistry 29:517–519.CrossRefGoogle Scholar
  12. Jensen, N. B., Zagrobelny, M., Hjerno, K., Olsen, C. E., Houghton-Larsen, J., Borch, J., Møller, B. L., and Bak, S. 2011. Convergent evolution in biosynthesis of cyanogenic defense compounds in plants and insects. Nat. Comm. 2: doi:  10.1038/ncomms1271.
  13. Kędziorski, A., Nakonieczny, M., Pyrak, K., Bembenek, J., and Rosiński, G. 1997. Energy Metabolism in the Apollo Butterfly (Parnassius apollo L., Lepidoptera, Papilionidae). pp 114–120 in: D. Konopińska, G. Goldsworthy, R. J. Nachman, J. Nawrot, I. Orchard, and G. Rosiński, (eds.). Insects-Chemical, Physiological and Environmental Aspects. University of Wroclaw.Google Scholar
  14. Kunert, M., Soe, A., Bartram, S., Discher, S., Tolzin-Banasch, K., Nie, L., David, A., Pasteels, J., and Boland, W. 2008. De novo biosynthesis versus sequestration: A network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem. Mol. Biol. 38:895–904.PubMedCrossRefGoogle Scholar
  15. Langel, D. and Ober, D. 2011. Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids. Phytochemistry 72:1576–1584.PubMedCrossRefGoogle Scholar
  16. Lechtenberg, M. and Nahrstedt, A. 1999. Cyanogenic glycosides, pp. 147–191, in R. Ikan (ed.), Naturally Occurring Glycosides. John Wiley and Sons, Chichester.Google Scholar
  17. Lorimer, S. D., Mawson, S. D., Perry, N. B., and Weavers, R. T. 1995. Isoltaion and synthesis of beta-miroside - an antifungal furanone glucosides from Prumnopitys ferruginea. Tetrahedron 51:7287–7300.CrossRefGoogle Scholar
  18. Matter, S. F., Roland, J., Keyghobadi, N., and Sabourin, K. 2003. The effects of isolation, habitat area and resources on the abundance, density and movement of the butterfly Parnassius smintheus. Am. Midl. Nat. 150:26–36.CrossRefGoogle Scholar
  19. Mead, E. W., Foderaro, T. A., Gardner, D. R., and Stermitz, F. R. 1993. Iridoid glycosides sequestration by Thessalia leanira (Lepidoptera, Nymphalidae) feeding on Castilleja integra (Scrophulariaceae). J. Chem. Ecol. 19:1155–1166.CrossRefGoogle Scholar
  20. Michel, F., Rebourg, C., Cosson, E., and Descimon, H. 2008. Molecular phylogeny of Parnassiinae butterflies (Lepidoptera: Papilionidae) based on the sequences of four mitochondrial DNA segments. Ann. Soc. Entomol. Fr. (n. s.) 44:1–36.Google Scholar
  21. Montllor, C. B., Bernays, E. A., and Barbehenn, R. V. 1990. Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera, Pyralidae) and a host plant, Genista monspessulana. J. Chem. Ecol. 16:1853–1865.CrossRefGoogle Scholar
  22. Morant, A. V., Jørgensen, K., Jørgensen, C., Paquette, S. M., Sánchez-Perez, R., Møller, B. L., and Bak, S. 2008. β-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813.PubMedCrossRefGoogle Scholar
  23. Nahrstedt, A., Walther, A., and Wray, V. 1982. Sarmentosin epoxide, a new cyanogenic compound from Sedum cepaea. Phytochemistry 21:107–110.CrossRefGoogle Scholar
  24. Nakonieczny, M. and Kedziorski, K. 2005. Feeding preferences of the Apollo butterfly (Parnassius apollo ssp frankenbergeri) larvae inhabiting the Pieniny Mts (southern Poland). C. R. Biol. 328:235–242.PubMedCrossRefGoogle Scholar
  25. Nishida, R. 1994. Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 5:127–138.CrossRefGoogle Scholar
  26. Nishida, R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47:57–92.PubMedCrossRefGoogle Scholar
  27. Nishida, R. and Rothschild, M. 1995. A cyanoglucoside stored by a Sedum-feeding apollo butterfly, Parnassius phoebus. Experientia 51:267–269.CrossRefGoogle Scholar
  28. Nishida, R., Rothschild, M., and Mummery, R. 1994. A cyanoglucoside, sarmentosin, from the magpie moth, Abraxas grossulariata, Geometridae: Lepidoptera. Phytochemistry 36:37–38.CrossRefGoogle Scholar
  29. Omoto, K., Yonezawa, T., and Shinkawa, T. 2009. Molecular systematics and evolution of the recently discovered "Parnassian" butterfly (Parnassius davydovi Churkin, 2006) and its allied species (Lepidoptera, Papilionidae). Gene 441:80–88.PubMedCrossRefGoogle Scholar
  30. Opitz, S. E. W. and Muller, C. 2009. Plant chemistry and insect sequestration. Chemoecology 19:117–154.CrossRefGoogle Scholar
  31. Pinto, C. F., Urzua, A., and Niemeyer, H. M. 2011. Sequestration of aristolochic acids from meridic diets by larvae of Battus polydamas archidamas (Papilionidae: Troidini). Eur. J. Entomol. 108:41–45.Google Scholar
  32. Rebourg, C., Petenian, F., Cosson, E., and Faure, E. 2006. Patterns of speciation and adaptive radiation in Parnassius butterflies. J. Entomol. 3:204–215.CrossRefGoogle Scholar
  33. SAITO, S., MOTAWIA, M. S., OLSEN, C. E., MØLLER, B. L., and BAK, S. 2012. Biosynthesis of rhodiocyanosides in Lotus japonicus: Rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Phytochemistry. doi:  dx.doi.org/10.1016/j.phytochem.2012.01.020
  34. Scott, J. A. 1986. The Butterflies of North America: A Natural History and Field Guide. Stanford University Press, Stanford, California.Google Scholar
  35. Shepard, J. H. and Manley, T. R. 1998. A species revision of the Parnassius phoebus complex in North America (Lepidoptera: Papilionidae), pp. 731–736, in T. C. Emmel (ed.), Systematics of Western North American Butterflies. Mariposa Press, Gainsville, FL.Google Scholar
  36. Takos, A. M., Knudsen, C., Lai, D., Kannangara, R., Mikkelsen, L., Motawia, M. S., Olsen, C. E., Saito, S., Tabata, S., Jørgensen, K., Møller, B. L., and Rook, F. 2011. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defense pathway. Plant J. 68:273–86.PubMedCrossRefGoogle Scholar
  37. Takos, A., Lai, D., Mikkelsen, L., Abou hachem, M., Shelton, D., Motawia, M. S., Olsen, C. E., Wang, T. L., Martin, C., and Rook, F. 2010. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22:1605–1619.PubMedCrossRefGoogle Scholar
  38. Turlin, B. and Malin, L. 2005. Etude synoptique et Répartition mondiale des Espèces du Genre Parnassius Latreille 1804 (Lepidoptera Papilionidae). L. Manil, (ed.). Paris.Google Scholar
  39. Vonnickischrosenegk, E. and Wink, M. 1993. Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera, Arctiidae). J. Chem. Ecol. 19:1889–1903.CrossRefGoogle Scholar
  40. Witthohn, K. and Naumann, C. M. 1987. Genus Zygaena F and related taxa (Insecta, Lepidoptera) 53. Active cyanogenesis - in Zygaenids and other Lepidoptera. Z. Naturforsch. C 42c:1319–1322.Google Scholar
  41. Zagrobelny, M., Bak, S., Ekstrom, C. T., Olsen, C. E., and Møller, B. L. 2007a. The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem. Mol. Biol. 37:10–18.PubMedCrossRefGoogle Scholar
  42. Zagrobelny, M., Bak, S., and Møller, B. L. 2008. Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468.PubMedCrossRefGoogle Scholar
  43. Zagrobelny, M., Bak, S., Olsen, C. E., and Møller, B. L. 2007b. Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37:1189–1197.PubMedCrossRefGoogle Scholar
  44. Zagrobelny, M. and Møller, B. L. 2011. Cyanogenic glucosides in the biological warfare between plants and insects: the Burnet moth-Birdsfoot trefoil model system. Phytochemistry 72:1585–1592.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nanna Bjarnholt
    • 1
  • Mirosław Nakonieczny
    • 2
  • Andrzej Kędziorski
    • 2
  • Diane M. Debinski
    • 3
  • Stephen F. Matter
    • 4
  • Carl Erik Olsen
    • 5
  • Mika Zagrobelny
    • 1
  1. 1.Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology and the VKR Centre of Excellence “Pro-Active Plants”University of CopenhagenFrederiksberg CDenmark
  2. 2.Department of Animal Physiology & EcotoxicologyUniversity of SilesiaKatowicePoland
  3. 3.Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesUSA
  4. 4.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  5. 5.Department of Basic Sciences and Environment and the VKR Centre of Excellence “Pro-Active Plants”University of CopenhagenFrederiksberg CDenmark

Personalised recommendations