Journal of Chemical Ecology

, Volume 38, Issue 6, pp 604–614 | Cite as

Foraging in the Dark – Chemically Mediated Host Plant Location by Belowground Insect Herbivores

  • Scott N. JohnsonEmail author
  • Uffe N. Nielsen


Root-feeding insects are key components in many terrestrial ecosystems. Like shoot-feeding insect herbivores, they exploit a range of chemical cues to locate host plants. Respiratory emissions of carbon dioxide (CO2) from the roots is widely reported as the main attractant, however, there is conflicting evidence about its exact role. CO2 may act as a ‘search trigger’ causing insects to search more intensively for more host specific signals, or the plant may ‘mask’ CO2 emissions with other root volatiles thus avoiding detection. At least 74 other compounds elicit behavioral responses in root-feeding insects, with the majority (>80 %) causing attraction. Low molecular weight compounds (e.g., alcohols, esters, and aldehydes) underpin attraction, whereas hydrocarbons tend to have repellent properties. A range of compounds act as phagostimulants (e.g., sugars) once insects feed on roots, whereas secondary metabolites often deter feeding. In contrast, some secondary metabolites usually regarded as plant defenses (e.g., dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)), can be exploited by some root-feeding insects for host location. Insects share several host location cues with plant parasitic nematodes (CO2, DIMBOA, glutamic acid), but some compounds (e.g., cucurbitacin A) repel nematodes while acting as phagostimulants to insects. Moreover, insect and nematode herbivory can induce exudation of compounds that may be mutually beneficial, suggesting potentially significant interactions between the two groups of herbivores. While a range of plant-derived chemicals can affect the behavior of root-feeding insects, little attempt has been made to exploit these in pest management, though this may become a more viable option with diminishing control options.


Insect Nematode Root exudates Root-feeders Soil Pests 



The authors are grateful for the invitation to write this article and to the two anonymous reviewers for their constructive comments and suggestions.


  1. Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99:26–35.Google Scholar
  2. Andersen, D. C. 1987. Belowground herbivory in natural communities—a review emphasizing fossorial animals. Q. Rev. Biol. 62:261–286.Google Scholar
  3. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57:233–266.PubMedGoogle Scholar
  4. Bernays, E. A. and Chapman, R. F. 1994. Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York.Google Scholar
  5. Bernays, E. A. and Woodhead, S. 1982. Plant phenols utilized as nutrients by a phytophagous insect. Science 216:201–203.PubMedGoogle Scholar
  6. Bernays, E. A., Chamberlain, D. J., and Woodhead, S. 1983. Phenols as nutrients for a phytophagous insect Anacridium melanorhodon. J. Insect Physiol. 29:535–539.Google Scholar
  7. Bernklau, E. J. and Bjostad, L. B. 1998a. Behavioral responses of first-instar western corn rootworm (Coleoptera: Chrysomelidae) to carbon dioxide in a glass bead bioassay. J. Econ. Entomol. 91:444–456.Google Scholar
  8. Bernklau, E. J. and Bjostad, L. B. 1998b. Reinvestigation of host location by western corn rootworm larvae (Coleoptera: Chrysomelidae): CO2 is the only volatile attractant. J. Econ. Entomol. 91:1331–1340.Google Scholar
  9. Bernklau, E. J., Fromm, E. A., and Bjostad, L. B. 2004. Disruption of host location of western corn rootworm larvae (Coleoptera: Chrysomelidae) with carbon dioxide. J. Econ. Entomol. 97:330–339.PubMedGoogle Scholar
  10. Bird, A. F. 1959. The attractiveness of roots to the plant parasitic nematodes Meloidogyne javanica and M. hapla. Nematologica 4:322–335.Google Scholar
  11. Bird, A. F. 1962. Orientation of the larvae of Meloidogyne javanica relative to roots. Nematologica 7:275–287.Google Scholar
  12. Bjostad, L. B. and Hibbard, B. E. 1992. 6-methoxy-2-benzoxazolinone—a semiochemical for host location by western corn rootworm larvae. J. Chem. Ecol. 18:931–944.Google Scholar
  13. Blackshaw, R. P. and Kerry, B. R. 2008. Root herbivory in agricultural ecosystems, pp. 35–53, in S. N. Johnson and P. J. Murray (eds.), Root Feeders—An Ecosystem Perspective. CABI, Wallingford.Google Scholar
  14. Britton, E. B. 1978. Revision of Australian chafers (Coleoptera: Scarabaeidae: Melolonthinae) vol. 2 tribe Melolonthini. Aust. J. Zool. (supp). 60:1–150.Google Scholar
  15. Calkins, C. O., Matteson, J. W., and Randall, D. D. 1967. Response of false wireworm Eleodes suturalis larvae to wheat in olfactometer tests. J. Econ. Entomol. 60:665–668.Google Scholar
  16. Chapman, R. F. 2003. Contact chemoreception in feeding by phytophagous insects. Annu. Rev. Entomol. 48:455–484.PubMedGoogle Scholar
  17. Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40:221–249.PubMedGoogle Scholar
  18. Cipollini, D., Rigsby, C., and Barto, E. K. 2012. Soil microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38: ------ this issue.Google Scholar
  19. Clark, K. E., Hartley, S. E., and Johnson, S. N. 2011. Does mother know best? Parent-offspring conflict in aboveground-belowground herbivore lifecycles. Ecol. Entomol. 36:117–124.Google Scholar
  20. Clark, K. E., Hartley, S. E., Brennan, R. M., Jennings, S. N., McMenemy, L. S., McNicol, J. W., Mitchell, C., and Johnson, S. N. 2012. Effects of cultivar and egg density on a colonizing vine weevil (Otiorhynchus sulcatus) population and its impacts on red raspberry growth and yield. Crop Prot. 32:76–82.Google Scholar
  21. Clemens, C. D., Aumann, J., Spiegel, Y., and Wyss, U. 1994. Attractant-mediated behavior of mobile stages of Heterodera schachtii. Fund. Appl. Nematol. 17:569–574.Google Scholar
  22. de Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., de Ruiter, P. C., Verhoef, H. A., Bezemer, T. M., and van der Putten, W. H. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713.PubMedGoogle Scholar
  23. Doane, J. F., Lee, Y. W., Westcott, N. D., and Klingler, J. 1975. The orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide. Can. Entomol. 107:1233–1251.Google Scholar
  24. Dobler, S., Petschenka, G., and Pankoke, H. 2011. Coping with toxic plant compounds—the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604.PubMedGoogle Scholar
  25. Dusenbery, D. B. 1987. Theoretical range over which bacteria and nematodes locate plant roots using carbon dioxide. J. Chem. Ecol. 13:1617–1624.Google Scholar
  26. Eben, A., Barbercheck, M. E., and Aluja, M. 1997. Mexican diabroticite beetles. 1. Laboratory test on host breadth of Acalymma and Diabrotica spp. Entomol. Exp. Appl. 82:53–62.Google Scholar
  27. Effmert, U., Kalderas, J., Warnke, R., and Piechulla, B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38: ------ this issue. Google Scholar
  28. Finch, S. and Skinner, G. 1974. Studies of the cabbage root fly, pp. 84–85, in: Report of National Vegetable Research Station, 1973. National Vegetable Research Station, Wellesbourne.Google Scholar
  29. Friebe, A., Klever, W., Sikora, R., and Schnabl, H. 1998. Allelochemicals in root exudates of maize: effects on root lesion nematode Pratylenchus zeae, pp. 71–93, in J. T. Romeo, K. R. Downum, and R. Verpoorte (eds.), Phytochemical Signals and Plant-Microbe Interactions. Recent Advances in Phytochemistry Vol. 32. Plenum Press, New York.Google Scholar
  30. Galbreath, R. A. 1988. Orientation of grass grub Costelytra zealandica (Coleoptera: Scarabaeidae) to a carbon dioxide source. N. Z. Entomol. 11:6–7.Google Scholar
  31. Gaynor, D. L., Lane, G. A., Biggs, D. R., and Sutherland, O. R. W. 1986. Measurement of grass grub resistance of bean in a controlled environment. N. Z. J. Exp. Agric. 14:77–82.Google Scholar
  32. Gerard, P. J. 2001. Dependence of Sitona lepidus (Coleoptera: Curculionidae) larvae on abundance of white clover Rhizobium nodules. Bull. Entomol. Res. 91:149–152.PubMedGoogle Scholar
  33. Grayston, S. J., Dawson, L. A., Treonis, A. M., Murray, P. J., Ross, J., Reid, E. J., and MacDougall, R. 2001. Impact of root herbivory by insect larvae on soil microbial communities. Eur. J. Soil Biol. 37:277–280.Google Scholar
  34. Gregory, P. J. 2006. Plant Roots—Growth, Activity and Interaction with Soils. Blackwell Publishing, Oxford.Google Scholar
  35. Guerin, P. M. and Ryan, M. F. 1984. Relationship between root volatiles of some carrot cultivars and their resistance to the carrot fly, Psila rosae. Entomol. Exp. Appl. 36:217–224.Google Scholar
  36. Hamilton, C. C. 1917. The behaviour of some soil insects in gradients of evaporating powder of air, carbon dioxide and ammonia. Biol. Bull. 32:159–182.Google Scholar
  37. Hartmann, A. and Schikora, A. 2012. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J. Chem. Ecol. 38: ------ this issue.Google Scholar
  38. Haynes, R. L. and Jones, C. M. 1976. Effects of the Bi locus in cucumber on reproduction, attraction, and response of the plant to infection by the southern rootknot nematode. J. Am. Soc. Hortic. Sci. 101:422–424.Google Scholar
  39. Hibbard, B. E., Bernklau, E. J., and Bjostad, L. B. 1994. Long-chain free fatty-acids—semiochemicals for host location by western corn rootworm larvae. J. Chem. Ecol. 20:3335–3344.Google Scholar
  40. Hiltpold, I. and Turlings, T. C. J. 2012. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests. J. Chem. Ecol. 38: ------ this issue. Google Scholar
  41. Horton, D. R. and Landolt, P. J. 2002. Orientation response of Pacific coast wireworm (Coleoptera: Elateridae) to food baits in laboratory and effectiveness of baits in field. Can. Entomol. 134:357–367.Google Scholar
  42. Huang, X. P. and Mack, T. P. 2001. Artificial carbon dioxide source to attract lesser cornstalk borer (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol. 94:860–867.PubMedGoogle Scholar
  43. Huang, X. P. and Mack, T. P. 2002. Collection and determination of lesser cornstalk borer (Lepidoptera: Pyralidae) larval attractant from peanut plants. Environ. Entomol. 31:15–21.Google Scholar
  44. Hunter, M. D. 2001. Out of sight, out of mind: The impacts of root-feeding insects in natural and managed systems. Agric. For. Entomol. 3:3–9.Google Scholar
  45. Ikeshoji, T., Ishikawa, Y., and Matsumoto, Y. 1980. Attractants against the onion maggots and flies, Hylemya antiqua, in onions inoculated with bacteria. J. Pestic. Sci. 5:343–350.Google Scholar
  46. Jewett, D. K. and Bjostad, L. B. 1996. Dichloromethane attracts diabroticite larvae in a laboratory behavioral bioassay. J. Chem. Ecol. 22:1331–1344.Google Scholar
  47. Johnson, S. N. and Gregory, P. J. 2006. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31:1–13.Google Scholar
  48. Johnson, S. N. and McNicol, J. W. 2010. Elevated CO2 and aboveground-belowground herbivory by the clover root weevil. Oecologia 162:209–216.PubMedGoogle Scholar
  49. Johnson, S. N. and Murray, P. J. (eds.) 2008. Root Feeders—An Ecosystem Perspective. CABI, Wallingford.Google Scholar
  50. Johnson, S. N., Gregory, P. J., Greenham, J. R., Zhang, X., and Murray, P. J. 2005. Attractive properties of an isoflavonoid found in white clover root nodules on the clover root weevil. J. Chem. Ecol. 31:2223–2229.PubMedGoogle Scholar
  51. Johnson, S. N., Zhang, X. X., Crawford, J. W., Gregory, P. J., Hix, N. J., Jarvis, S. J., Murray, P. J., and Young, I. M. 2006. Effects of CO2 on the searching behaviour of the root-feeding clover weevil. Bull. Entomol. Res. 96:361–366.PubMedGoogle Scholar
  52. Johnson, S. N., Hawes, C., and Karley, A. J. 2009. Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Funct. Ecol. 23:699–706.Google Scholar
  53. Johnson, S. N., Barton, A. T., Clark, K. E., Gregory, P. J., McMenemy, L. S., and Hancock, R. D. 2011. Elevated atmospheric carbon dioxide impairs the performance of root-feeding vine weevils by modifying root growth and secondary metabolites. Global Change Biol. 17:688–695.Google Scholar
  54. Jones, O. T. and Coaker, T. H. 1977. Orientated responses of carrot fly larvae, Psila rosae, to plant odours, carbon dioxide and carrot root volatiles. Physiol. Entomol. 2:189–197.Google Scholar
  55. Jones, O. T. and Coaker, T. H. 1978. A basis for host plant finding in phytophagous larvae. Entomol. Exp. Appl. 24:272–284.Google Scholar
  56. Jones, O. T. and Coaker, T. H. 1979. Responses of carrot fly larvae, Psila rosae, to the odorous and contact-chemostimulatory metabolites of host and non-host plants. Physiol. Entomol. 4:353–360.Google Scholar
  57. Jung, S. C., Martinez-Medina, A., Lopez Raez, J. A., and Pozo, M. J. 2012. Priming of plant defences in mycorrhiza-induced resistance. J. Chem. Ecol. 38: ------ this issue. Google Scholar
  58. Kamm, J. A. and Buttery, R. G. 1984. Root volatile components of red clover—identification and bioassay with the clover root borer (Coleoptera, Scolytidae). Environ. Entomol. 13:1427–1430.Google Scholar
  59. Karban, R. 1980. Periodical cicada nymphs impose periodical oak tree wood accumulation. Nature 287:326–327.Google Scholar
  60. Klingler, J. 1957. Über die Bedeutung des Kohlendioxyds fur die Orientierung der Larven von Otiorrhynchus sulcatus F., Melolontha und Agriotes (Col.) im Boden (Vorläufige Mitteilung). Mitt. Schweiz. Entomol. Ges. 30:317–322.Google Scholar
  61. Klingler, J. 1958. Die Bedeutung der Kohlendioxyd-Ausscheidung der Wurzeln für die Orientierung der Larven von Otiorrhynchus sulcatus F. und anderer bodenbewohnender phytophager Insektenarten. Mitt. Schweiz. Entomol. Ges. 31:205–269.Google Scholar
  62. Klingler, J. 1961. Anziehungsversuche mit Ditylenchus dipsaci unter Berücksichtigung der wirkung des Kohlendioxyds, des Redoxpotentials und anderer Faktoren. Nematologica 6:69–84.Google Scholar
  63. Klingler, J. 1965. On the orientation of plant nematodes and of some other soil animals. Nematologica 11:4–18.Google Scholar
  64. Klingler, J. 1966. The location of the CO2 chemoreceptors in the larva of Otiorrhynchus sulcatus. Entomol. Exp. Appl. 9:271–277.Google Scholar
  65. Koštál, V. 1992. Orientation behavior of newly hatched larvae of the cabbage maggot, Delia radicum (L.) (Diptera, Anthomyiidae), to volatile plant metabolites. J. Insect Behav. 5:61–70.Google Scholar
  66. Lane, G. A., Biggs, D. R., Russell, G. B., Sutherland, O. R. W., Williams, E. M., Maindonald, J. H., and Donnell, D. J. 1985. Isoflavonoid feeding deterrents for Costelytra zealandica—structure-activity-relationships. J. Chem. Ecol. 11:1713–1735.Google Scholar
  67. Lees, A. D. 1943. On the behaviour of wireworms of the genus Agriotis Esch. (Coleoptera, Elateridae). I. Reactions to humidity. J. Exp. Biol. 20:43–53.Google Scholar
  68. Long, D. B. 1958. Host plant location by larvae of the wheat bulb fly (Leptohylemyia coarctata Fallén). Proc. Roy. Entomol. Soc. 33:1–8.Google Scholar
  69. Macdonald, P. J. and Ellis, C. R. 1990. Survival time of unfed, 1st instar western corn rootworm (Coleoptera, Chrysomelidae) and the effects of soil type, moisture, and compaction on their mobility in soil. Environ. Entomol. 19:666–671.Google Scholar
  70. Maki, A. and Ryan, M. F. 1989. Root-mediated effects in carrot resistance to the carrot fly, Psila rosae. J. Chem. Ecol. 15:1867–1882.Google Scholar
  71. Maki, A., Kitajima, J., Stewart, G., Abe, F., and Ryan, M. F. 1989. Isolation, identification, and bioassay of chemicals affecting nonpreference carrot root resistance to carrot-fly larvae. J. Chem. Ecol. 15:1883–1897.Google Scholar
  72. Mathesius, U. 2001. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52:419–426.PubMedGoogle Scholar
  73. Matsumoto, Y. 1970. Volatile organic sulfur compounds as insect attractants with special reference to host selection, pp. 133–160, in D. L. Wood, R. M. Silverstein, and M. Nakajima (eds.), Control of Insect Behavior by Natural Products. Academic, New York.Google Scholar
  74. Matsumoto, Y. and Thorsteinson, A. J. 1968. Olfactory response of larvae of the onion maggot, Hylemya antiqua Meigen (Diptera: Anthomyiidae) to organic sulfur compounds. Appl. Entomol. Zool. 3:107–111.Google Scholar
  75. Mochizuki, A., Ishikawa, Y., and Matsumoto, Y. 1989. Olfactory response of the larvae of the onion fly, Hylemya antiqua Meigen (Diptera: Anthomyiidae) to volatile compounds. Appl. Entomol. Zool. 24:29–35.Google Scholar
  76. Morgan, A. C. and Crumb, S. E. 1928. Notes on the chemotrophic responses of certain insects. J. Econ. Entomol. 21:913–920.Google Scholar
  77. Nordenhem, H. and Nordlander, G. 1994. Olfactory oriented migration through soil by root-living Hylobius abietis (L.) larvae (Col., Curculionidae). J. Appl. Entomol. 117:457–462.Google Scholar
  78. Payne, D. and Gregory, P. J. 1988. The soil atmosphere, pp. 298–314, in A. Wild (ed.), Russell’s Soil Conditions and Plant Growth. Longman, Harlow, U.K.Google Scholar
  79. Perry, R. N. 1997. Plant signals in nematode hatching and attraction, pp. 38–50, in C. Fenoll, F. M. W. Grundler, and S. A. Ohl (eds.), Cellular and Molecular Aspects of Plant-Nematode Interactions. Kluwer Academic Publishers, Dordrecht.Google Scholar
  80. Perry, R. N. and Aumann, J. 1998. Behaviour and sensory responses, pp. 75–102, in R. N. Perry and D. J. Wright (eds.), The Physiology and Biochemistry of Free-Living and Plant-Parasitic Nematodes. CABI Publishing, Oxon.Google Scholar
  81. Prot, J. C. 1980. Migration of plant-parasitic nematodes toward plant roots. Revue de Nématologie 3:305–318.Google Scholar
  82. Rasmann, S., Ali, J., Helder, J., and Van Der Putten, W. H. 2012. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol. 38: ------ this issue.Google Scholar
  83. Reinecke, A., Mueller, F., and Hilker, M. 2008. Attractiveness of CO2 released by root respiration fades on the background of root exudates. Basic Appl. Ecol. 9:568–576.Google Scholar
  84. Riga, E., Perry, R. N., Barrett, J., and Johnston, M. R. L. 1997. Electrophysiological responses of male potato cyst nematodes, Globodera rostochiensis and G. pallida, to some chemicals. J. Chem. Ecol. 23:417–428.Google Scholar
  85. Robert, C. A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G. R., Villard, N., Gailland, M., Köllner, T., Giron, D., Body, M., Babst, B., Ferrieri, R., Turlings, T. C. J., and Erb, M. 2012. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol. Lett. 15:55–64.PubMedGoogle Scholar
  86. Rogers, H. H., Runion, G. B., and Krupa, S. V. 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 83:155–189.PubMedGoogle Scholar
  87. Rogers, H. H., Prior, S. A., Runion, G. B., and Mitchell, R. J. 1996. Root to shoot ratio of crops as influenced by CO2. Plant Soil 187:229–248.Google Scholar
  88. Ross, K. T. A. and Anderson, M. 1992. Larval responses of three vegetable root fly pests of the Genus Delia (Diptera, Anthomyiidae) to plant volatiles. Bull. Entomol. Res. 82:393–398.Google Scholar
  89. Rudinsky, J. A. 1966. Scolytid beetles associated with Douglas-fir: Responses to terpenes. Science 152:218–219.PubMedGoogle Scholar
  90. Rudinsky, J. A. and Zethner-Møller, O. 1967. Olfactory responses of Hylastes nigrinus to various host materials. Can. Entomol. 99:911–916.Google Scholar
  91. Russell, G. B., Sutherland, O. R. W., Christmas, P. E., and Wright, H. 1982. Feeding deterrents for black beetle larvae, Heteronychus arator (Scarabaeidae), in Trifolium repens. N. Z. J. Zool. 9:145–149.Google Scholar
  92. Ryan, M. F. and Guerin, P. M. 1982. Behavioral responses of the carrot fly larva, Psila rosae, to carrot root volatiles. Physiol. Entomol. 7:315–324.Google Scholar
  93. Rygg, T. and Sömme, L. 1972. Oviposition and larval development of Hylemya floralis (Fallén) (Diptera, Anthomyiidae) on varieties of swedes and turnips. Norsk Entomologisk Tidsskrift 19:81–90.Google Scholar
  94. Scott, G. C. 1974. The response of wheat bulb fly larvae to cereal exudates and extracts. Ann. Appl. Biol. 77:107–111.Google Scholar
  95. Soni, S. K. and Finch, S. 1979. Laboratory evaluation of sulphur-bearing chemicals as attractants for larvae of the onion fly, Delia antiqua (Meigen) (Diptera: Anthomyiidae). Bull. Entomol. Res. 69:291–298.Google Scholar
  96. Staley, J. T. and Johnson, S. N. 2008. Climate change impacts on root herbivores, pp. 192–213, in S. N. Johnson and P. J. Murray (eds.), Root Feeders—An Ecosystem Perspective. CABI, Wallingford.Google Scholar
  97. Stokes, B. M. 1956. A chemotactic response in wheat bulb fly larvae. Nature 4537:801.Google Scholar
  98. Strnad, S. P. and Bergman, M. K. 1987a. Distribution and orientation of western corn-rootworm (Coleoptera, Chrysomelidae) larvae in corn roots. Environ. Entomol. 16:1193–1198.Google Scholar
  99. Strnad, S. P. and Bergman, M. K. 1987b. Movement of first instar Western corn rootworms (Coleoptera: Chrysomelidae) in soil. Environ. Entomol. 16:975–978.Google Scholar
  100. Strnad, S. P., Bergman, M. K., and Fulton, W. C. 1986. First instar western corn rootworm (Coleoptera, Chrysomelidae) response to carbon dioxide. Environ. Entomol. 15:839–842.Google Scholar
  101. Sutherland, O. R. W. 1972. Olfactory response of Costelytra zealandica (Coleoptera: Melolonthinae) larvae to grass root odours. N. Z. J. Sci. 15:165–172.Google Scholar
  102. Sutherland, O. R. W. and Hillier, J. R. 1974a. Feeding behaviour of the grass grub Costelytra zealandica (White) (Coleoptera: Melolonthinae) 3. The influence of amino acids, ascorbic acid, and inorganic salts. N. Z. J. Zool. 1:211–216.Google Scholar
  103. Sutherland, O. R. W. and Hillier, J. R. 1974b. Olfactory response of Costelytra zealandica (Coleoptera: Melolonthinae) to the roots of several pasture plants. N. Z. J. Zool. 1:365–369.Google Scholar
  104. Sutherland, O. R. W., Russell, G. B., and Biggs, D. R. 1980. Insect feeding deterrent activity of phytoalexin isoflavonoids. Biochem. Syst. Ecol. 8:73–75.Google Scholar
  105. Tapia, T., Perich, F., Pardo, F., Palma, G., and Quiroz, A. 2007. Identification of volatiles from differently aged red clover (Trifolium pratense) root extracts and behavioural responses of clover root borer (Hylastinus obscurus) (Marsham) (Coleoptera: Scolytidae) to them. Biochem. Syst. Ecol. 35:61–67.Google Scholar
  106. Thorpe, W. H., Crombie, A. C., Hill, R., and Darrah, J. H. 1946. The behaviour of wireworms in response to chemical stimulation. J. Exp. Biol. 23:234–266.Google Scholar
  107. van Dam, N. M. 2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. S. 40:373–391.Google Scholar
  108. van Gundy, S. D., Kirkpatrick, J. D., and Golden, J. 1977. Nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. J. Nematol. 9:113–121.PubMedGoogle Scholar
  109. von Städler, E. 1971. The orientation and host plant selection of Psilae rosae F. (Diptera: Psilidae). Z. Angew. Entomol. 69:425–438.Google Scholar
  110. Weissteiner, S. and Schutz, S. 2006. Are different volatile pattern influencing host plant choice of belowground living insects? Mitt. Dtsch. Ges. Angew. Ent. 15:51–55.Google Scholar
  111. Wenke, K., Kai, M., and Piechulla, B. 2010. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.PubMedGoogle Scholar
  112. Wolfson, J. L. 1987. Impact of rhizobium nodules on Sitona hispidulus, the clover root curculio. Entomol. Exp. Appl. 43:237–243.Google Scholar
  113. Wurst, S., Wagenaar, R., Biere, A., and van der Putten, W. H. 2010. Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant Soil 329:117–126.Google Scholar
  114. Xie, Y. S., Arnason, J. T., Philogene, B. J. R., Lambert, J. D. H., Atkinson, J., and Morand, P. 1990. Role of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the resistance of maize to western corn rootworm, Diabrotica virgifera virgifera (Leconte) (Coleoptera, Chrysomelidae). Can. Entomol. 122:1177–1186.Google Scholar
  115. Xie, Y. S., Arnason, J. T., Philogene, B. J. R., Atkinson, J., and Morand, P. 1992. Behavioral responses of western corn rootworm larvae to naturally-occurring and synthetic hydroxamic acids. J. Chem. Ecol. 18:945–957.Google Scholar
  116. Yeates, G. W., Saggar, S., Hedley, C. B., and Mercer, C. F. 1999. Increase in 14C-carbon translocation to the soil microbial biomass when five species of plant-parasitic nematodes infect roots of white clover. Nematology 1:295–300.Google Scholar
  117. Zhang, X., Johnson, S. N., Gregory, P. J., Crawford, J. W., Young, I. M., Murray, P. J., and Jarvis, S. C. 2006. Modelling the movement and survival of the root-feeding clover weevil, Sitona lepidus, in the root-zone of white clover. Ecol. Model. 190:133–146.Google Scholar
  118. Zhang, X., Johnson, S. N., Crawford, J. W., Gregory, P. J., and Young, I. M. 2007. A general random walk model for the leptokurtic distribution of organism movement: theory and application. Ecol. Model. 200:79–88.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Hawkesbury Institute for the EnvironmentUniversity of Western SydneyPenrithAustralia
  2. 2.School of Science and HealthUniversity of Western SydneyPenrithAustralia

Personalised recommendations