Journal of Chemical Ecology

, Volume 38, Issue 2, pp 204–212 | Cite as

Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide

  • Adam B. McKiernanEmail author
  • Julianne M. O’Reilly-Wapstra
  • Cassandra Price
  • Noel W. Davies
  • Brad M. Potts
  • Mark J. Hovenden


Plant secondary metabolites (PSMs) mediate a wide range of ecological interactions. Investigating the effect of environment on PSM production is important for our understanding of how plants will adapt to large scale environmental change, and the extended effects on communities and ecosystems. We explored the production of PSMs under elevated atmospheric carbon dioxide ([CO2]) in the species rich, ecologically and commercially important genus Eucalyptus. Seedlings from multiple Eucalyptus globulus and E. pauciflora populations were grown in common glasshouse gardens under elevated or ambient [CO2]. Variation in primary and secondary chemistry was determined as a function of genotype and treatment. There were clear population differences in PSM expression in each species. Elevated [CO2] did not affect concentrations of individual PSMs, total phenolics, condensed tannins or the total oil yield, and there was no population by [CO2] treatment interaction for any traits. Multivariate analysis revealed similar results with significant variation in concentrations of E. pauciflora oil components between populations. A [CO2] treatment effect was detected within populations but no interactions were found between elevated [CO2] and population. These eucalypt seedlings appear to be largely unresponsive to elevated [CO2], indicating stronger genetic than environmental (elevated [CO2]) control of expression of PSMs.


Elevated CO2 Eucalyptus Genetic variation Plant secondary metabolites PSM Carbon dioxide Terpene Essential oil Phenolic Condensed tannin 



We thank Hugh Fitzgerald for assistance with laboratory work, Ian Cummings and Tracy Winterbottom for glasshouse support, and Greg Jordan, Joe Bailey, René Vaillancourt, Natasha Wiggins, Rebecca Jones and Tanya Bailey for comments on the manuscript. We thank Alieta Eyles for FPC standards. We also thank anonymous reviewers for offering constructive feedback on the manuscript. The work was supported by ARC Discovery grants to BP and JO’R-W (DP0773686), and by ARC Linkage grant LP0991026 (industry partner Greening Australia).

Supplementary material

10886_2012_71_MOESM1_ESM.docx (14 kb)
Supplemental Table 1 (DOCX 13 kb)
10886_2012_71_MOESM2_ESM.docx (17 kb)
Supplemental Table 2 (DOCX 16 kb)
10886_2012_71_MOESM3_ESM.docx (17 kb)
Supplemental Table 3 (DOCX 17 kb)
10886_2012_71_MOESM4_ESM.docx (19 kb)
Supplemental Table 4 (DOCX 19 kb)


  1. Agrell, J., McDonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272.CrossRefGoogle Scholar
  2. andrew, R. L., Wallis, I. R., Harwood, C. E., Henson, M., and Foley, W. J. 2007. Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153:891–901.PubMedCrossRefGoogle Scholar
  3. Andrew, R. L., Wallis, I. R., Harwood, C. E., and FFoley, W. J. 2010. Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa. Ann. Bot. 105:707–717.PubMedCrossRefGoogle Scholar
  4. Attiwell, P. M. and Leeper, G. W. 1987. Forest soils and nutrient cycles. Melbourne University Press, Melbourne.Google Scholar
  5. Atwell, B. J., Henery, M. L., and Ball, M. C. 2009. Does soil nitrogen influence growth, water transport and survival of snow gum (Eucalyptus pauciflora Sieber ex Sprengel.) under CO2 enrichment? Plant Cell Environ. 32:553–566.PubMedCrossRefGoogle Scholar
  6. Bidart-Bouzat, M. G. and Imeh-Nathaniel, A. 2008. Global change effects on plant chemical defenses against insect herbivores. J. Integr. Plant Biol. 50:1339–1354.PubMedCrossRefGoogle Scholar
  7. Bignell, C. M., Dunlop, P. J., and Brophy, J. J. 1998. Volatile leaf oils of some south-western and southern Australian species of the genus Eucalyptus (series 1). Part XIX. Flavour Frag. J. 13:131–139.CrossRefGoogle Scholar
  8. Brooker, I. 2002. Botany of the eucalypts, pp. 3–35, in J. J. W. Coppen (ed.), Eucalyptus: The Genus Eucalyptus. Taylor & Francis, London.Google Scholar
  9. Butcher, P. A., McDonald, M. W., and Bell, J. C. 2009. Congruence between environmental parameters, morphology and genetic structure in Australia’s most widely distributed eucalypt, Eucalyptus camaldulensis. Tree Genet. Genomes 5:189–210.CrossRefGoogle Scholar
  10. Close, D. C., Davidson, N. J., Churchill, K. C., and Grosser, P. 2005. Evaluation of establishment techniques on Eucalyptus nitens and E. pauciflora in the Midlands of Tasmania. Ecol. Manag. Restor. 6:149–151.CrossRefGoogle Scholar
  11. Close, D. C., Davidson, N. J., Churchill, K. C., and Corkrey, R. 2010. Establishment of native Eucalyptus pauciflora and exotic Eucalyptus nitens on former grazing land. New For. 40:143–152.CrossRefGoogle Scholar
  12. Davies, N. W. 1990. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbioxwax 20 M phases. J. Chromatogr. 503:1–24.CrossRefGoogle Scholar
  13. Eldridge, K. G., Davidson, J., Harwood, C., and van Wyk, G. 1993. Eucalypt Domestication and Breeding. Clarendon, Oxford.Google Scholar
  14. Eschler, B. M., Pass, D. M., Willis, R., and Foley, W. J. 2000. Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem. Syst. Ecol. 28:813–824.PubMedCrossRefGoogle Scholar
  15. Eyles, A., Davies, N. W., and Mohammed, C. 2003. Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E. nitens. J. Chem. Ecol. 29:881–898.PubMedCrossRefGoogle Scholar
  16. Freeman, J. S., O’Reilly-Wapstra, J. M., VVaillancourt, R. E., Wiggins, N., and Potts, B. M. 2008. Quantitative trait loci for key defensive compounds affecting herbivory of eucalypts in Australia. New Phytol. 178:846–851.PubMedCrossRefGoogle Scholar
  17. Fritz, R. S. 1999. Resistance of hybrid plants to herbivores: genes, environment, or both? Ecology 80:382–391.CrossRefGoogle Scholar
  18. Gershenzon, J. and Dudareva, N. 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3:408–414.PubMedCrossRefGoogle Scholar
  19. Gleadow, R. M., Foley, W. J., and Woodrow, I. E. 1998. Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant Cell Environ. 21:12–22.CrossRefGoogle Scholar
  20. Graham, H. D. 1992. Stabilization of the prussian blue color in the determination of polyphenols. J. Agr. Food Chem. 40:801–805.CrossRefGoogle Scholar
  21. Griffin, K. L., Bashkin, M. A., Thomas, R. B., and Strain, B. R. 1997. Interactive effects of soil nitrogen and atmospheric carbon dioxide on root/rhizosphere carbon dioxide efflux from loblolly and ponderosa pine seedlings. Plant Soil 190:11–18.CrossRefGoogle Scholar
  22. Hagerman, A. E. 2002. Tannin Chemistry. Miami University, Oxford.Google Scholar
  23. HOLMES, Z. 2009. Genetics of flammability in E. globulus [Thesis]. Hobart, Tasmania, Australia: University of Tasmania.Google Scholar
  24. Hovenden, M. J. and Williams, A. L. 2010. The impacts of rising CO2 concentrations on Australian terrestrial species and ecosystems. Austral. Ecol. 35:665–684.CrossRefGoogle Scholar
  25. IPCC. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, UK & New York, NY, USA.Google Scholar
  26. Knepp, R. G., Hamilton, J. G., Mohan, J. E., Zangerl, A. R., Berenbaum, M. R., and Delucia, E. H. 2005. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167:207–218.PubMedCrossRefGoogle Scholar
  27. Kuokkanen, K., Niemelä, P., Matala, J., Julkunen-Tiitto, R., Heinonen, J., Rousi, M., Henttonen, H., Tahvanainen, J., and Kellomäki, S. 2004. The effects of elevated CO2 and temperature on the resistance of winter-dormant birch seedlings (Betula pendula) to hares and voles. Global Change Biol. 10:1504–1512.CrossRefGoogle Scholar
  28. Lawler, I. R., Foley, W. J., Woodrow, I. E., and Cork, S. J. 1997. The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68.CrossRefGoogle Scholar
  29. Li, H., Madden, J. L., and Potts, B. M. 1995. Variation in volatile leaf oils of the Tasmanian Eucalyptus species I. Subgenus Monocalyptus. Biochem. Syst. Ecol. 23:299–318.CrossRefGoogle Scholar
  30. Li, H., Madden, J. L., and Potts, B. M. 1996. Variation in volatile leaf oils of the Tasmanian Eucalyptus species II. Subgenus Symphyomyrtus. Biochem. Syst. Ecol. 24:547–569.CrossRefGoogle Scholar
  31. Lindroth, R. L. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J. Chem. Ecol. 36:2–21.PubMedCrossRefGoogle Scholar
  32. Lindroth, R. L., Kinney, K. K., and Platz, C. L. 1993. Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777.CrossRefGoogle Scholar
  33. Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55:591–628.PubMedCrossRefGoogle Scholar
  34. Mattson, W. J., Kuokkanen, K., Niemela, P., Julkunen-Tiitto, R., Kellomaki, S., and Tahvanainen, J. 2004. Elevated CO2 alters birch resistance to Lagomorpha herbivores. Global Change Biol. 10:1402–1413.CrossRefGoogle Scholar
  35. McCarthy, H. R., Oren, R., Johnsen, K. H., Gallet-Budynek, A., Pritchard, S. G., Cook, C. W., Ladeau, S. L., Jackson, R. B., and Finzi, A. C. 2010. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: Interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185:514–528.PubMedCrossRefGoogle Scholar
  36. McElrone, A. J., Reid, C. D., Hoye, K. A., Hart, E., and Jackson, R. B. 2005. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Global Change Biol. 11:1828–1836.CrossRefGoogle Scholar
  37. McMurtrie, R. E., Norby, R. J., Medlyn, B. E., Dewar, R. C., Pepper, D. A., Reich, P. B., and Barton, C. V. M. 2008. Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis. Funct. Plant Biol. 35:521–534.CrossRefGoogle Scholar
  38. Moore, B. D., Wallis, I. R., Palá-Paúl, J., Brophy, J. J., Willis, R. H., and Foley, W. J. 2004. Antiherbivore chemistry of Eucalyptus—Cues and deterrents for marsupial folivores. J. Chem. Ecol. 30:1743–1769.PubMedCrossRefGoogle Scholar
  39. Moore, B. D., Foley, W. J., Wallis, I. R., Cowling, A., and Handasyde, K. A. 2005. Eucalyptus foliar chemistry explains selective feeding by koalas. Biol. Lett. 1:64–67.PubMedCrossRefGoogle Scholar
  40. O’Reilly-Wapstra, J. M., McArthur, C., and Potts, B. M. 2004. Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Funct. Ecol. 18:677–684.CrossRefGoogle Scholar
  41. O’Reilly-Wapstra, J. M., Humphreys, J. R., and Potts, B. M. 2007. Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J. Chem. Ecol. 33:1876–1884.PubMedCrossRefGoogle Scholar
  42. O’Reilly-Wapstra, J. M., Bailey, J. K., McArthur, C., and Potts, B. M. 2010. Genetic-and chemical-based resistance to two mammalian herbivores varies across the geographic range of Eucalyptus globulus. Evol. Ecol. Res. 12:491–505.Google Scholar
  43. O’Reilly-Wapstra, J. M., Freeman, J. S., Davies, N. W., Vaillancourt, R. E., Fitzgerald, H., and Potts, B. M. 2011. Quantitative trait loci for foliar terpenes in a global eucalypt species. Tree Genet. Genomes 7:485–498.CrossRefGoogle Scholar
  44. Steinbauer, M. J. 2010. Latitudinal trends in foliar oils of eucalypts: environmental correlates and diversity of chrysomelid leaf-beetles. Austral Ecol. 35:204–213.CrossRefGoogle Scholar
  45. Thomas, S. M., Whitehead, D., Reid, J. B., Cook, F. J., Adams, J. A., and Leckie, A. C. 1999. Growth, loss, and vertical distribution of Pinus radiata fine roots growing at ambient and elevated CO2 concentration. Global Change Biol. 5:107–121.CrossRefGoogle Scholar
  46. Wallis, I. R. and Foley, W. J. 2005. The rapid determination of sideroxylonals in Eucalyptus foliage by extraction with sonication followed by HPLC. Phytochem. Anal. 16:49–54.PubMedCrossRefGoogle Scholar
  47. Wallis, I. R., Watson, M. L., and Foley, W. J. 2002. Secondary metabolites in Eucalyptus melliodora: field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust. J. Zool. 50:507–519.CrossRefGoogle Scholar
  48. Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy, C. J., Lonsdorf, E. V., Allan, G. J., Difazio, S. P., Potts, B. M., Fischer, D. G., Gehring, C. A., Lindroth, R. L., Marks, J. C., Hart, S. C., Wimp, G. M., and Wooley, S. C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7:510–523.PubMedCrossRefGoogle Scholar
  49. Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.PubMedCrossRefGoogle Scholar
  50. Wiggins, N. L., Marsh, K. J., Wallis, I. R., Foley, W. J., and McArthur, C. 2006. Sideroxylonal in Eucalyptus foliage influences foraging behaviour of an arboreal folivore. Oecologia 147:272–279.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Adam B. McKiernan
    • 1
    Email author
  • Julianne M. O’Reilly-Wapstra
    • 1
  • Cassandra Price
    • 1
  • Noel W. Davies
    • 2
  • Brad M. Potts
    • 1
  • Mark J. Hovenden
    • 1
  1. 1.School of Plant Science and CRC for ForestryUniversity of TasmaniaHobartAustralia
  2. 2.Central Science LaboratoryUniversity of TasmaniaHobartAustralia

Personalised recommendations