Skip to main content
Log in

The Allelochemical L-DOPA Increases Melanin Production and Reduces Reactive Oxygen Species in Soybean Roots

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The non-protein amino acid, L-3,4-dihydroxyphenylalanine (L-DOPA), is the main allelochemical released from the roots of velvetbean and affects seed germination and root growth of several plant species. In the work presented here, we evaluated, in soybean roots, the effects of L-DOPA on the following: polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities; superoxide anion \( \left( {{\text{O}}_2^{{\bullet - }}} \right) \), hydrogen peroxide (H2O2), and melanin contents; and lipid peroxidation. To this end, 3-day-old seedlings were cultivated in half-strength Hoagland’s solution (pH 6.0), with or without 0.1 to 1.0 mM L-DOPA in a growth chamber (at 25°C, with a light/dark photoperiod of 12/12 hr and a photon flux density of 280 μmol m−2 s−1) for 24 hr. The results showed that L-DOPA increased the PPO activity and, further, the melanin content. The activities of SOD and POD increased, but CAT activity decreased after the chemical exposure. The contents of reactive oxygen species (ROS), such as \( {\text{O}}_2^{{\bullet - }} \) and H2O2, and the levels of lipid peroxidation significantly decreased under all concentrations of L-DOPA tested. These results suggest that L-DOPA was absorbed by the soybean roots and metabolized to melanin. It was concluded that the reduction in the \( {\text{O}}_2^{{\bullet - }} \) and H2O2 contents and lipid peroxidation in soybean roots was due to the enhanced SOD and POD activities and thus a possible antioxidant role of L-DOPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAT:

catalase

L-DOPA:

L-3,4-dihydroxyphenylalanine

EDTA:

ethylene diamide tetracetic acid

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

NBT:

nitroblue tetrazolium

\( {\text{O}}{{\text{H}}^{\bullet }} \) :

hydroxyl radical

POD:

peroxidase

PPO:

polyphenol oxidase

PVPP:

polyvinylpolypyrrolidone

ROS:

reactive oxygen species

\( {\text{O}}_2^{{\bullet - }} \) :

superoxide anion

SOD:

superoxide dismutase

References

  • Abdel-Naser, M. B., Krasagakis, K., Garbe, C., and Eberle, J. 2003. Direct effects on proliferation, antigen expression and melanin synthesis of cultured normal human melanocytes in response to UVB and UVA light. Photodermatol. Photoimmunol. Photomed. 19:122–127.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, C., and Kohlenbach, H. W. 1990. L-DOPA content, peroxidase activity, and response to H2O2 of Vicia fava L. and V. narbonensis L. in situ and in vitro. Protoplasma. 154:144–150.

    Article  CAS  Google Scholar 

  • Anaya, A. L. 1999. Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit. Rev. Plant Sci. 18:697–739.

    Article  CAS  Google Scholar 

  • Apel, K., and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55:373–399.

    Article  PubMed  CAS  Google Scholar 

  • Bubna, G. A., Lima, R. B., Zanardo, D. Y. L., Dos Santos, W. D., Ferrarese, M. L. L., and Ferrarese-Filho, O. 2011. Exogenous caffeic acid inhibits the growth and enhances the lignification of the roots of soybean (Glycine max). J. Plant Physiol. doi:10.1016/j.jplph.2011.03.005.

  • Cakmak, I., and Horst, W. J. 1991. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83:463–468.

    Article  CAS  Google Scholar 

  • Doblinski, P. M. F., Ferrarese, M. L. L., Huber, D. A., Scapim, C. A., and Ferrarese-Filho, O. 2003. Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxibenzoic acids. Braz. Arch. Biol. Technol. 46:193–198.

    Article  CAS  Google Scholar 

  • Fujii, Y. 1999. Allelopathy of hairy vetch and Mucuna; their application for sustainable agriculture, pp. 289–300, in C. H. Chou (ed.). Biochemistry and Allelopathy from Organisms to Ecosystems in the Pacific. Academic Sinica, Taipei.

    Google Scholar 

  • Fujii, Y., Shibuya, T., and Yasuda, T. 1991. L-3,4-dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L.) DC. var. utilis. Agric. Biol. Chem. 55:617–618.

    Article  CAS  Google Scholar 

  • Furubayashi, A., Hiradate, S., and Fujii, Y. 2005. Adsorption and transformation reactions of L-DOPA in soils. Soil Sci. Plant Nutr. 51:819–825.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutases occurrence in higher plants. Plant Physiol. 59:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S. S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909–930.

    Article  PubMed  CAS  Google Scholar 

  • Golisz, A., Sugano, M., Hiradate, S., and Fujii, Y. 2011. Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA. Planta. 233:231–240.

    Article  PubMed  CAS  Google Scholar 

  • Gülçin, I. 2007. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids. 32:431–438.

    Article  PubMed  Google Scholar 

  • Hachinohe, M., and Matsumoto, H. 2005. Involvement of reactive oxygen species generated from melanin synthesis pathway in phytotoxic action of L-dopa. J. Chem. Ecol. 31:237–246.

    Article  PubMed  CAS  Google Scholar 

  • Hachinohe, M., and Matsumoto, H. 2007a. Involvement of melanin synthesis and reactive oxygen species in phytotoxic action of L-DOPA in carrot cells. Crop Prot. 26:294–298.

    Article  CAS  Google Scholar 

  • Hachinohe, M., and Matsumoto, H. 2007b. Mechanism of selective phytotoxicity of L-3,4-dihydroxyphenylalanine (L-DOPA) in barnyardglass and lettuce. J. Chem. Ecol. 33:1919–1926.

    Article  PubMed  CAS  Google Scholar 

  • Hachinohe, M., Sunohara, Y., and Matsumoto, H. 2004. Absorption, translocation and metabolism of L-DOPA in barnyard grass and lettuce: their involvement in species-selective phytotoxic action. Plant Growth Reg. 43:237–243.

    Article  CAS  Google Scholar 

  • Hsu, Y. T. and Kao, C. H. 2007. Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil. 300:137–147.

    Article  CAS  Google Scholar 

  • Kruk, L., Lichszteld, K., Bounias, M., Kladna, A., and Krubera-Nowakowska, L. 1999. Formation of active oxygen species during autoxidation of DOPA. Chemosphere. 39:443–453.

    Article  CAS  Google Scholar 

  • Moller, I. M., Jensen, P. E., and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol . 58:459–481.

    Article  PubMed  Google Scholar 

  • Muñoz-Muñoz, J. L., Acosta-Motos, J. R., Garcia-Molina, F., Varon, V., Garcia-Ruíz, P. A., Tudela, J., Cargia-Cánovas, F., and Rodrígues-López, J. N. 2010. Tyrosinase inactivation in its action on Dopa. Biochim. Biophys. Acta. 1804:1467–1475.

    PubMed  Google Scholar 

  • Nishihara, E., Parvez, M. M. Araya, H., and Fujii, Y. 2004. Germination growth response of different plant species to the allelochemical L-3,4-dihydroxyphenylalanine (L-DOPA). Plant Growth Reg. 42:181–189.

    Article  CAS  Google Scholar 

  • Nishihara, E., Parvez, M. M. Araya, H., Kawashima, S., and Fujii, Y. 2005. L-3-(3,4-dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna pruriens) roots. Plant Growth Reg. 45:113–120.

    Article  CAS  Google Scholar 

  • Oktay, M., Küfreviolu, I., Kocaçalişkan, I., and Şakirolu, H. 1995. Polyphenoloxidase from Amasya apple. J. Food Sci. 60:494–496.

    Article  CAS  Google Scholar 

  • Pattison, D. I., Dean, R. T., and Davies, M. J. 2002. Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s. Toxicology. 177:23–37.

    Article  PubMed  CAS  Google Scholar 

  • Randhir, R., Vattem, D. A., and Shetty, K. 2006. Antioxidant enzyme response studies in H2O2 stressed porcine muscle tissue following treatment with fava bean sprout extract and L-DOPA. J. Food Biochem. 30:671–698.

    Article  CAS  Google Scholar 

  • Rehr, S. S., Janzen, D. H., and Feeny, P. P. 1973. L-DOPA in legume seeds: a chemical barrier to insect attack. Science. 181:81–82

    Article  PubMed  CAS  Google Scholar 

  • Reigosa, M. J. and Pazos-Malvido, E. 2007. Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J. Chem. Ecol. 33:1456–1466.

    Article  PubMed  CAS  Google Scholar 

  • Riley, P. A. 1997. Melanin. Int. J. Biochem. Cell Biol. 29:1235–1239.

    Article  CAS  Google Scholar 

  • Soares, A. R., Ferrarese, M. L. L., Siqueira, R. C., Böhm, F. M. L. Z., and Ferrarese-Filho, O. 2007. L-DOPA increases lignification associated with Glycine max root growth-inhibition. J. Chem. Ecol. 33:265–275.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, J. P., Jenner, A., Butler, J., Aruoma, O. I., Dexter, D. T., Jenner, P., and Halliwell, B. 1996. Evaluation of the pro-oxidant and antioxidant actions of L-DOPA and dopamine in vitro: implications for Parkinson’s disease. Free Radic. Res. 24:95–105.

    Article  PubMed  CAS  Google Scholar 

  • Tada, M., Rohno, M., and Niwano, Y. 2010. Scavenging or quenching effect of melanin on superoxide anion and singlet oxygen. J. Clin. Biochem. Nutr. 46:224–228.

    Article  PubMed  CAS  Google Scholar 

  • Tománkóva, K., Luhová, L., Petrvalsky, M., Pec, P., and Lebeda, A. 2006. Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiol. Mol. Plant Pathol. 68:22–32.

    Google Scholar 

  • Topal, S., and Kocaçalişkan, I. 2006. Allelopathic effects of DOPA against four weed species. DPÜ Fen Bil. Enst. Dergisi. 11:27–32.

    Google Scholar 

  • Tu, Y. G., Sun, Y. A., Tian, Y. G., Xie, M. Y., and Chen, J. 2009. Physicochemical characterisation and antioxidant activity of melanin from the muscles of taihe black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem. 114:1345–1350.

    Article  CAS  Google Scholar 

  • Wang, Z., Dillon, J., and Gaillard, E. R. 2006. Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem. Photobiol. 82:474–479.

    Article  PubMed  CAS  Google Scholar 

  • Weir, T. L., Park, S. W., and Vivanco, J. M. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 7:472–479.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y. X., and Von Tiedemann, A. 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ. Pollut. 116:37–47.

    Article  PubMed  CAS  Google Scholar 

  • Zanardo, D. I. L., Lima, R. B., Ferrarese, M. L. L., Bubna, G. A., and Ferrarese-Filho, O. 2009. Soybean root growth inhibition induced by p-coumaric acid. Environ. Exp. Bot. 66:25–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.L.L. Ferrarese and O. Ferrarese-Filho are research fellow of CNPq (Brazilian Council for Scientific and Technological Development). A.R. Soares is the recipient of a CNPq fellowship. The technical assistance of Aparecida M. D. Ramos and the financial support of the CNPq are gratefully acknowledged. We also express our gratitude to the two reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Ferrarese-Filho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, A.R., de Lourdes Lucio Ferrarese, M., de Cássia Siqueira-Soares, R. et al. The Allelochemical L-DOPA Increases Melanin Production and Reduces Reactive Oxygen Species in Soybean Roots. J Chem Ecol 37, 891–898 (2011). https://doi.org/10.1007/s10886-011-9988-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9988-2

Key Words

Navigation