Skip to main content
Log in

Secondary Metabolites Released by The Burying Beetle Nicrophorus vespilloides: Chemical Analyses and Possible Ecological Functions

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Burying beetles of the genus Nicrophorus localize small vertebrate carcasses by emitted volatiles. The carcass that serves as reproduction and breeding site is buried in the soil by the beetles. Biparental care for offspring includes both preservation of the carrion and its preparation as diet and nursery. Buried carcasses show no signs of microbial decay, and those experimentally treated with Nicrophorus secretions are known to grow fewer bacteria and fungi. In order to investigate the chemical composition of these secretions, we used GC-MS for analysis of methanolic extracts of anal and oral secretions released by adult N. vespilloides. Furthermore, we analyzed the headspace of adult N. vespilloides by SPME-GC-MS and searched for compounds with known antimicrobial activity. We identified 34 compounds in the headspace, and anal and oral secretions, 26 of which occurred consistently. We discuss the ecological relevance of these compounds with respect to both their antimicrobial activity and ecological relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The genus was first described as N i crophorus by Fabricius in 1775. It appears that the same name was used by Fabricius several times subsequently. By contrast, the etymologically more meaningful name N e crophorus (gr.: ‘corpse carrier’) describes a habit characteristic for this genus. Nevertheless, assuming N i crophorus to be an incorrect transliteration, a change to N e crophorus would lead to a violation of the priority rule (Herman, 1964). Thus, the name N e crophorus must no longer be considered valid (Herman, 1964; Peck and Miller, 1982). Despite this, the latter spelling was still predominant in literature until the early 1990s.

  2. (+)- and (−)-2-methylbutyric acid could not be separated under the GC conditions applied.

References

  • Ali, Y., Dolan, M. J., Fendler, E. J., and Larsen, E. L. 2001. Alcohols, pp. 229–253, in S. S. Block (ed.). Disinfection, Sterilization, and Preservation. 5th edn. Lippincott, Williams & Wilkins, Philadelphia, USA.

    Google Scholar 

  • Asolkar, R. N., Maskey, R. P., Helmke, E., and Laatsch, H. 2002. Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J. Antibiot. 55:893–898.

    CAS  PubMed  Google Scholar 

  • Ata, A., Tan, D. S., Matochko, W. L. and Adesanwo, J. K. 2011. Chemical constituents of Drypetes gossweileri and their enzyme inhibitory and anti-fungal activities. Phytochem. Lett. 4:34–37.

    Article  CAS  Google Scholar 

  • Attygalle, A. B., Wu, X., Ruzicka, J., Rao, S., Garcia, S., Herath, K., Meinwald, J., Maddison, D. R., and Will, K. W. 2004. Defensive chemicals of two species of Trachypanus Motschulski. J. Chem. Ecol. 30:577–588.

    Article  CAS  PubMed  Google Scholar 

  • Berdela, G., Lustigman, B., and Shubeck, P. P. 1994. A list of bacterial flora residing in the mid- and hindgut regions of six species of carrion beetles (Coleoptera: Silphidae). Entomol. News 105:47–58.

    Google Scholar 

  • Blum, M. S., Wallace. J. B., and Fales, H. M. 1973. Skatole and tridecene: identification and possible role in a chrysopid secretion. Insect Biochem. 3:353–357.

    Article  CAS  Google Scholar 

  • Blum, M. S., Jones, T. H., Howard, D. F., and Overal, W. L. 1982. Biochemistry of termite defenses: Coptotermes, Rhinotermes and Cornitermes species. Comp. Biochem. Physiol. B 71:731–733.

    Article  Google Scholar 

  • Burger, B. V., and Petersen, W. B. G. 2002. Semiochemicals of the Scarabaeinae: VI. Identification of EAD-active constituents of abdominal secretion of male dung beetle, Kheper nigroaeneus. J. Chem. Ecol. 28:501–513.

    Article  CAS  PubMed  Google Scholar 

  • Burger, B. V., Petersen, W. B. G., Weber, W. G., and Munro, Z. M. 2002. Semiochemicals of the Scarabaeinae: VII. Identification and synthesis of EAD-active constituents of abdominal sex-attracting secretion of the male dung beetle, Kheper subaeneus. J. Chem. Ecol. 28:2527–2539.

    Article  CAS  PubMed  Google Scholar 

  • Burger, B. V., Petersen, W. B. G., Ewig, B. T., Neuhaus, J., Tribe, G. D., Spies, H. S. C., and Burger, W. J. G. 2008a. Semiochemicals of the Scarabaeinae: VIII. Identification of active constituents of the abdominal sex-attracting secretion of the male dung beetle, Kheper bonellii, using gas chromatography with flame ionization and electroantennographic detection in parallel. J. Chromatography A 1186:245–253.

    Article  CAS  Google Scholar 

  • Burger, B. V., Viviers, M. Z., Bekker, J. P. I., Le Roux, M., Fish, N., Fourie, W. B., and Weibchen, G. 2008b. Chemical characterization of territorial marking fluid of male Bengal tiger, Panthera tigris. J. Chem. Ecol. 34:659–671.

    Article  CAS  Google Scholar 

  • Callery, P. S., and Geelhaar, L. A. 1984. Biosynthesis of 5-aminopentanoic acid and 2-piperidone in mouse. J. Neurochem. 43:1631–1634.

    Article  CAS  PubMed  Google Scholar 

  • Classen, R., and Dettner, K. 1983. Pygidial defensive titer and population structure of Agabus bipustulatus L. and Agabus paludosus F. (Coleoptera, Dytiscidae). J. Chem. Ecol. 9:201–209.

    Article  CAS  Google Scholar 

  • Cork, A. 1994. Identification of electrophysiologically-active compounds for the New World screwworm, Cochliomyia hominivorax, in larval wound fluid. Med. Vet. Entomol. 8:151–159.

    Article  CAS  PubMed  Google Scholar 

  • Dani, F. R., Cannoni, S., Turillazzi, S., and Morgan, E. D. 1996. Ant repellent effect of the sternal gland secretion of Polistes dominulus (Christ) and P. sulcifer (Zimmermann). (Hymenoptera: Vespidae). J. Chem. Ecol. 22:37–48.

    Article  CAS  Google Scholar 

  • DEKEIRSSCHIETER, J., VERHEGGEN, F. J., GOHY, M., HUBRECHT, F., BOURGUIGNON, L., LOGNAY, G., and HAUBRUGE, E. 2009. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci. Int. 189:46–53.

  • Dettner, K., and Schwinger, G. 1980. Defensive substances from pygidial glands of water beetles. Biochem. Syst. Ecol. 8:89–95.

    Article  CAS  Google Scholar 

  • Dettner, K., and Reissenweber, F. 1991. The defensive secretion of Omaliinae and Proteininae (Coleoptera: Staphylinidae): its chemistry, biological and taxonomic significance. Biochem. Syst. Ecol. 19:291–303.

    Article  CAS  Google Scholar 

  • Devi, P., Wahidullah, S., Rodrigues, C., and Souza, L. D. 2010. The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Mar. Drugs. 8:1203–1212.

    Article  CAS  PubMed  Google Scholar 

  • Dhiman, S. B., Kamat, J. P., and Naik, D. B. 2009. Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies. Chem. Biol. Interact. 182:119–127.

    Article  CAS  PubMed  Google Scholar 

  • do Nascimento, R. R., Schoeters, E., Morgan, E. D., Billen, J., and Stradling, D. J. 1996. Chemistry of metapleural gland secretions of three attine ants, Atta sexdens rubropilosa, Atta cephalotes, and Acromyrmex octospinosus (Hymenoptera: Formicidae). J. Chem. Ecol. 22:987–1000.

    Article  Google Scholar 

  • Duffey, S. S., Blum, M. S., Fales, H. M.; Evans, S. L., Roncadori, R. W., Tiemann, D. L., and Nakagawa, Y. 1977. Benzoyl cyanide and mandelonitrile benzoate in the defensive secretion of millipedes. J. Chem. Ecol. 3:101–113.

    Article  CAS  Google Scholar 

  • Duffield, R. M., Blum, M. S., Wallace, J. B., Lloyd, H. A., and Regnier, F. E. 1977. Chemistry of the defensive secretion of the caddisfly Pycnopsyche scabripennis. (Trichoptera: Limnephilidae). J. Chem. Ecol. 3:649–656.

    Article  CAS  Google Scholar 

  • Eggert, A.-K., Reinking, M., and Müller, J. K. 1998. Parental care improves offspring survival and growth in burying beetles. Anim. Behav. 55:97–107.

    Article  PubMed  Google Scholar 

  • Eisner, T., Deyrup, M., Jacobs, R., and Meinwald, J. 1986. Necrodols: anti-insectan terpenes from defensive secretion of carrion beetle (Necrodes surinamenisis). J. Chem. Ecol. 12:1407–1415.

    Article  CAS  Google Scholar 

  • Eisner, T., Attygalle, A. B., Conner, W. E., Eisner, M., Mcleod, E., and Meinwald, J. 1996. Chemical egg defense in a green lacewing (Ceraeochrysa smithi). Proc. Natl. Acad. Sci. USA 93:3280–3283.

    Article  CAS  PubMed  Google Scholar 

  • Eisner, T., Morgan, R. C., Attygalle, A. B., Smedley, S. R., Herath, K. B., and Meinwald, J. 1997. Defensive production of quinoline by a phasmid insect (Oreophotes peruana). J. Exp. Biol. 200:2493–2500.

    CAS  PubMed  Google Scholar 

  • Elsden, R. S., and Hilton, M. G. 1978. Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch. Microbiol. 117:165–172.

    Article  CAS  PubMed  Google Scholar 

  • ELSDEN, R. S., HILTON, M. G., and WALLER, J. M. 1976. The end products of the metabolism of aromatic amino acids by clostridia. Arch. Microbiol. 107:283–288.

  • Fischer, L. J., and Hamburger, S. A. 1980. Dimethylurea: a radical scavenger that protects isolated pancreatic islets from the effect of alloxan and dihydrofumarate exposure. Life Sci. 26:1405–1409.

    Article  CAS  PubMed  Google Scholar 

  • Francelino, M. R., Mendonça, A. L., do Nascimento, R. R., and Santana, A. E. G. 2006. The mandibular gland secretions of the leaf-cutting ants Atta sexdens sexdens and Atta opaciceps exhibit intercaste and intercolony variations. J. Chem. Ecol. 32:643–656.

    Article  CAS  PubMed  Google Scholar 

  • Francke, W., and Dettner, K. 2005. Chemical signaling in beetles. Top. Curr. Chem. 240:85–166.

    Google Scholar 

  • Frerichs, G., Arends, G., and Zörnig, H. 1930. (Hrsg.) Hagers Handbuch der Pharmazeutischen Praxis. 1. berichtigter Neudruck, 1. Band, S. 974–977, Julius Springer Verlag, Berlin, Germany.

  • Goddard, P. A., and McCue, K. A. 2001. Phenolic compounds, pp. 255–282, in S. S. Block (ed.). Disinfection, Sterilization, and Preservation. 5th edn. Lippincott, Williams & Wilkins, Philadelphia, USA.

    Google Scholar 

  • Grossman, J. D., and Smith, R. J. 2008. Phoretic mite discrimination among male burying beetle (Nicrophorus investigator) hosts. Ann. Entomol. Soc. Am. 101:266–271.

    Article  Google Scholar 

  • Haberer, W., Schmitt, T., Peschke, K., Schreier, P., and Müller, J. K. 2008. Ethyl 4-methyl heptanoate: a male-produced pheromone of Nicrophorus vespilloides. J. Chem. Ecol. 34:94–98.

    Article  CAS  PubMed  Google Scholar 

  • Haberer, W., Steiger, S., and Müller, J. K. 2010. (E)-Methylgeranate, a chemical signal of juvenile hormone titre and its role in the partner recognition system of burying beetles. Anim. Behav. 79:17–24.

    Article  Google Scholar 

  • Henderson, G., and Jeanne, R. L. 1989. Response of aphid-tending ants to a repellent produced by wasps (Hymenoptera: Formicidae, Vespidae). Ann. Ent. Soc. Am. 82:516–519.

    Google Scholar 

  • Henzell, R. F., and Lowe, M. D. 1970. Sex attractant of the grass grub beetle. Science. 168:1005–1006.

    Article  CAS  PubMed  Google Scholar 

  • Herman, L. H., Jr. 1964. Nomenclatural consideration of Nicrophorus (Coleoptera: Silphidae). Coleopt. Bull. 18:5–7.

    Google Scholar 

  • Hoback, W. W., Bishop, A. A., Kroemer, J., Scalzitti, J., and Schaffer, J. J. 2004. Differences among antimicrobial properties of carrion beetle secretions reflect phylogeny and ecology. J. Chem. Ecol. 30:719–729.

    Article  CAS  PubMed  Google Scholar 

  • Honda, K., and Kawatoko, M. 1982. Exocrine substances of the white cabbage butterfly, Pieris rapae crucivora (Lepidoptera: Pieridae). Appl. Ent. Zool. 17:325–331.

    CAS  Google Scholar 

  • Huberman, L., Gollop, N., Mumcuoglu, K. Y., Breuer, E., Bhusare, S. R., Shai, Y., and Galun, R. 2007. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med. Vet. Entomol. 21:127–131.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, B. K., Lim, S. W., Kim, B. S., Lee, J. Y., and Moon, S. S. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67:3739–3745.

    Article  CAS  PubMed  Google Scholar 

  • Jacques, B. J., Akahane, S., Abe, M., Middelton, W., Hoback, W. W., and Schaffer, J. J. 2009. Temperature and food availability differentially affect the production of antimicrobial compounds in oral secretions produced by two species of burying beetle. J. Chem. Ecol. 35:871–877.

    Article  CAS  PubMed  Google Scholar 

  • Kalinová, B., Podskalská, Růžička, J., and Hoskovec, J. 2009. Irresistible bouquet of death—how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwiss. 96:889–899.

    Article  PubMed  Google Scholar 

  • Kamio, M., Ko, K.-C., Zheng, S., Wang, B., Collins, S. L., Gadda, G., Tai, P. C., and Derby, C. D. 2009. The chemistry of escapin: Identification and quantification of the components in the complex mixture generated by an L-amino acid oxidase in the defensive secretion of the sea snail Aplysia californica. Chem. Eur. J. 15:1597–1603.

    Article  CAS  Google Scholar 

  • Kelley, K. C., and Schilling, A. B. 1998. Quantitative variation in chemical defense within and among subgenera of Cicindela. J. Chem. Ecol. 24:451–472.

    Article  CAS  Google Scholar 

  • Kim, Y., Cho, J.-Y., Kuk, J.-H., Moon, J.-H., Cho, J.-I., Kim, Y.-C., and Park, K.-H. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, chungkook-jang. Curr. Microbiol. 48:312–317.

    Article  CAS  PubMed  Google Scholar 

  • Laurent, P., Braekman, J.-C., and Daloze, D. 2005. Insect chemical defense. Top. Curr. Chem. 240:166–229.

    Google Scholar 

  • Le, P. D., Aarnink, A. J. A., Ogink, N. W. M., Becker, P. M., and Verstegen, M. W. A. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3–30.

    Article  PubMed  Google Scholar 

  • Lüllmann, H., Mohr, K., and Hein, L. 2006. Pharmakologie und Toxikologie. 16. Auflage. S. 492, Georg Thieme Verlag, Stuttgart, Germany.

  • Maskey, R. P., Helmke, E., and Laatsch, H. 2003. Himalomycin A and B: Isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J. Antibiot. 56:942–949.

    CAS  PubMed  Google Scholar 

  • Meierhofer, I., Schwarz, H. H., and Müller, J. K. 1999. Seasonal variation in parental care, offspring development, and reproductive success in the burying beetle, Nicrophorus vespillo. Ecol. Entomol. 24:73–79.

    Article  Google Scholar 

  • Meinwald, J., Roach, B., Hicks, K., Alsop, D., and Eisner, T. 1985. Defensive steroids from a carrion beetle (Silpha americana). Experientia 41:516–519.

    Article  CAS  PubMed  Google Scholar 

  • Meinwald, J., Roach, B., and Eisner, T. 1987. Defensive steroids from a carrion beetle (Silpha novaboracensis). J. Chem. Ecol. 13:35–38.

    Article  CAS  Google Scholar 

  • Mendonça, A. L., Da Silva, C. E., Torres De Mesquita, F. L., Da Silva Campos, R., do Nascimento, R. R., Pessoa De Azevedo Ximenes, E. and Santana, A. E. G. 2009. Antimicrobial activities of components of the glandular secretion of leaf cutting ants of the genus Atta. Antonie van Leeuwenhoek 95:295–303.

    Article  Google Scholar 

  • Müller, J. K., Eggert, A.-K., and Elsner, T. 2003. Nestmate recognition in burying beetles: the “breeder’s badge” as a cue used by females to distinguish their mates from male intruders. Behav. Ecol. 14:212–220.

    Article  Google Scholar 

  • Müller, J. K., Braunisch, V., Hwang, W., and Eggert, A.-K. 2007. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 18:196–203.

    Article  Google Scholar 

  • Narayana, K. J. P., Prabhakar, P., Vijayalakshmi, M., Venkateswarlu, Y., and Krishna, P. S. J. 2007. Biological activity of phenylpropionic acid isolated from a terrestrial Streptomyces. Pol. J. Microbiol. 56:191–197.

    CAS  PubMed  Google Scholar 

  • Nor Aliza, A. R., and Stanley, D. W. 1998. A digestive phospholipase A2 in larval mosquitoes, Aedes aegypti. Insect Biochem. Mol. Biol. 28:561–569.

    Article  Google Scholar 

  • Peck, S. B., and Miller, S. E. 1982. Type designations and synonymies for North American Silphidae (Coleoptera). Psyche 89:151–156.

    Article  Google Scholar 

  • Pukowski, E. 1933. Ökologische Untersuchungen an Necrophorus F. Z. Morphol. Ökol. Tiere 27:518–586.

    Article  Google Scholar 

  • Rana, R. L., Hoback, W. W., Rahim, N. A. A., Bedick, J., and Stanley, D. W. 1997. Pre-oral digestion: A phospholipase A2 associated with oral secretions in adult burying beetles, Nicrophorus marginatus. Comp. Biochem. Physiol. B 118:375–380.

    Article  Google Scholar 

  • Roach, B., Eisner, T., and Meinwald, J. 1990. Defense mechanisms of arthropods. 83. α- and β-necrodol, novel terpenes from a carrion beetle (Necrodes surinamensis, Silphidae, Coleoptera). J. Org. Chem. 55:4047–4051.

    Article  CAS  Google Scholar 

  • Rollo, C. D., Czyzewska, E., and Borden, J. H. 1994. Fatty acid necromones for cockroaches. Naturwiss. 81:409–410.

    Article  CAS  Google Scholar 

  • Roncadori, R. W., Duffey, S. S., and Blum, M. S. 1985. Antifungal activity of defensive secretions of certain millipedes. Mycologia 77:185–191.

    Article  Google Scholar 

  • Rozen, D. E., Engelmoer, D. J. P., and Smiseth, P. T. 2008. Antimicrobial strategies in burying beetles breeding on carrion. Proc. Natl. Acad. Sci. USA 105:17890–17895.

    Article  CAS  PubMed  Google Scholar 

  • Ruther, J., Reinecke, A., Tolasch, T., and Hilker, M. 2001. Make love not war: a common arthropod defence compound as a sex pheromone in the forest cockchafer Melolontha hippocastani. Oecologia 128:44–47.

    Article  Google Scholar 

  • Ruther, J., Reinecke, A., Tolasch, T., and Hilker, M. 2002. Phenol—another cockchafer attractant shared by Melolontha hippocastani and Melolontha melolontha. Z. Naturforsch. C 57:910–913.

    Google Scholar 

  • Schildknecht, H., Holoubek, and Wolkenstörfer, M. 1962. Über einen Inhaltsstoff der Pygidialblasen vom Gelbrandkäfer. X. Mitteilung über Insektenabwehrstoffe. Z. Naturforsch. B 17:81–83.

    Google Scholar 

  • Schildknecht, H., and Weis, K. H. 1962. Zur Kenntnis der Pygidialblasensubstanzen vom Gelbrandkäfer (Dytiscus marginalis L.). XIII. Mitteilung über Insektenabwehrstoffe. Z. Naturforsch. B 17:448–455.

    Google Scholar 

  • Schildknecht, H. 1970. Die Wehrchemie von Land- und Wasserkäfern. Angew. Chem. 82:17–25.

    Article  Google Scholar 

  • Schwarz, H. H., and Müller, J. K. 1992. The dispersal behaviour of the phoretic mite Poecilochirus carabi (Mesostigmata, Parasitidae): adaptation to the breeding biology of its carrier Necrophorus vespilloides (Coleoptera, Silphidae). Oecologia 89:487–493.

    Google Scholar 

  • Schwarz, H. H., and Koulianos, S. 1998. When to leave the brood chamber? Routes of dispersal in mites associated with burying beetles. Exp. Appl. Acarol. 22:621–631.

    Article  Google Scholar 

  • Scott, M. P. 1998. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43:595–618.

    Article  CAS  PubMed  Google Scholar 

  • Scott, M. P., Madjid, K., and Orians, C. M. 2008. Breeding alters cuticular hydrocarbons and mediates partner recognition by burying beetles. Anim. Behav. 76:507–513.

    Article  Google Scholar 

  • Sikes, D. S. 2008. Carrion beetles, pp. 749–758, in J. K. Capinera (ed.). Encyclopaedia of Entomology, vol. 4, 2nd edn. Springer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Solter, L. F., Lustgman, B., and Shubeck, P. 1989. Survey of medically important true bacteria found associated with carrion beetles (Coleoptera: Silphidae). J. Med. Entomol. 26:354–359.

    CAS  PubMed  Google Scholar 

  • Steiger, S., Peschke, K., Francke, W., and Müller, J. K. 2007. The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. B 274:2211–2220.

    Article  CAS  PubMed  Google Scholar 

  • Steiger, S., Peschke, K., and Müller, J. K. 2008. Correlated changes in breeding status and polyunsaturated cuticular hydrocarbons: the chemical basis of nestmate recognition in the burying beetle Nicrophorus vespilloides? Behav. Ecol. Sociobiol. 62:1053–1060.

    Article  Google Scholar 

  • Steiger, S., Whitlow, S., Peschke, K., and Müller, J. K. 2009. Surface chemicals inform about sex and breeding status in the biparental burying beetle Nicrophorus vespilloides. Ethology 115:178–185.

    Article  Google Scholar 

  • Stratford, M., and Eklund, T. 2003. Organic acids and esters, pp. 48–84, in N. J. Russell, and G. W. Gould (eds.). Food Preservatives, 2nd. ed. Kluwer Academic/Plenum Publishers, New York, USA.

    Google Scholar 

  • Suzuki, S. 2000. Carrion burial by Nicrophorus vespilloides (Coleoptera: Silphidae) prevents fly infestation. Entomol. Sci. 3:269–272.

    Google Scholar 

  • Suzuki, S. 2001. Suppression of fungal development on carcasses by the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomol. Sci. 4:403–405.

    Google Scholar 

  • Swann, L., Chidlow, L. E., Forbes, S., and Lewis, S. W. 2010. Preliminary studies into the characterization of chemical markers of decomposition for geoforensics. J. Forensic Sci. 55:308–314.

    Article  CAS  PubMed  Google Scholar 

  • Uscian, J. M., Miller, J. S., Sarath, G., and Stanley-Samuelson, D. W. 1995. A digestive phospholipase A2 in the tiger beetle Cicindella circumpicta. J. Insect Physiol. 41:135–141.

    Article  CAS  Google Scholar 

  • Zarbin, P. H. G., Leal, W. S., Ávila, C. J., and Oliveira, L. J. 2007. Identification of the sex pheromone of Phyllophaga cuyabana (Coleoptera: Melolonthidae). Tetrahedron Lett. 48:1991–1992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this study by the Erwin-Stein-Foundation (Giessen, Germany) through a grant to Thomas Degenkolb is gratefully acknowledged. The study was supported by the Hessian Ministry for Science and Art by a grant from the LOEWE-Research Focus AmbiProbe to Rolf-Alexander Düring and Andreas Vilcinskas. We are indebted to Josef K. Müller and Wolf Haberer (University of Freiburg, Germany) for providing parasite-free Nicrophorus vespilloides. Trinad Chakraborty (University of Giessen, Germany) provided mouse carcasses. The comments of Monika Wimmer-Röll and Dirk Preuß (both from University of Giessen), and Hartmut Laatsch (University of Göttingen) improved the quality of our manuscript. This work would not have been possible without the technical assistance of Janusz Czynski (University of Giessen). We thank Rod Snowdon (University of Giessen) for language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Vilcinskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degenkolb, T., Düring, RA. & Vilcinskas, A. Secondary Metabolites Released by The Burying Beetle Nicrophorus vespilloides: Chemical Analyses and Possible Ecological Functions. J Chem Ecol 37, 724–735 (2011). https://doi.org/10.1007/s10886-011-9978-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9978-4

Key Words

Navigation