Skip to main content
Log in

Synergistic or Antagonistic Modulation of Oviposition Response of Two Swallowtail Butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by Its Constitutive Prenylated Flavonoid, Phellamurin

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Papilio maackii females prefer a rutaceous plant, Phellodendron amurense, for oviposition, whereas another semi-sympatric Rutaceae feeder, Papilio protenor, never exploits this plant as a host in nature. However, the larvae of both species perform well on this plant in the laboratory. Phellamurin, a flavonoid present in the organic fraction from P. amurense inhibits egg laying by P. protenor. We examined whether phellamurin is involved in the differential acceptance of P. amurense by the two butterflies. The ovipositing females of P. maackii readily accepted P. amurense and a methanolic extract of the foliage, while P. protenor rejected them entirely. However, the aqueous fraction derived from the extract elicited significant oviposition responses of similar levels from the two species. Phellamurin did not induce oviposition behavior in P. protenor females. In contrast, P. maackii was stimulated to oviposit by phellamurin at concentrations exceeding 0.2%. The response was dose-dependent and reached ca. 70% at 2% phellamurin, which is approximately equivalent to its natural abundance in young leaves of P. amurense. Since the aqueous fraction was very stimulatory to both species, the combined effect of phellamurin and the aqueous fraction on oviposition was tested. The addition of phellamurin to the aqueous fraction enhanced the ovipositional activity of P. maackii, but dramatically suppressed the oviposition response of P. protenor even at 0.1% concentration. These results, taken together with those obtained from electrophysiological recordings with foretarsal chemosensilla, indicate that phellamurin acts as an oviposition stimulant for P. maackii, and as a potent deterrent for P. protenor. The results suggest that host range expansion or host shifts may be made by ovipositing females that overcome phytochemical barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad-García, B., Garmón-Lobato, S., Berrueta, L. A., Gallo, B., and Vicente, F. 2009. A fragmentation study of dihydroquercetin using triple quadrupole mass spectrometry and its application for identification of dihydroflavonols in Citrus juices. Rapid Commun. Mass Spectrom. 23:2785–2792.

    Article  PubMed  Google Scholar 

  • Aubert, J., Legal, L., Descimon, H., and Michel, F. 1999. Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidae, Lepidoptera). Mol. Phylogenet. Evol. 12:156–167.

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum, M. R. 1991. Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch. Insect Biochem. Physiol. 17:213–221.

    Article  CAS  Google Scholar 

  • Bernays, E. A. 2001. Neural limitations in phytophagous insects: Implications for diet breadth and evolution of host affiliation. Annu. Rev. Entomol. 46:703–727.

    Article  PubMed  CAS  Google Scholar 

  • Chachin, M., Honda, K., and Ômura, H. 2007. Appraisal of the acceptability of subtropical rutaceous plants for a swallowtail butterfly, Papilio protenor demetrius (Lepidoptera: Papilionidae). Appl. Entomol. Zool. 42:121–128.

    Article  Google Scholar 

  • Du, Y.-J., Van Loon, J. J. A., and Renwick, J. A. A. 1995. Contact chemoreception of oviposition-stimulating glucosinolates and an oviposition-deterrent cardenolide in two subspecies of Pieris napi. Physiol. Entomol. 20: 164–174.

    Article  CAS  Google Scholar 

  • Endo, S., and Nihira, I. 1990. Larval Food of Japanese Butterflies. Group Tamamushi, Tokyo (in Japanese).

    Google Scholar 

  • Feeny, P. 1991. Chemical constraints on the evolution of swallowtail butterflies, pp. 315–340, in P. W. Price, T. M. Lewinsohn, G. W. Fernandes, W. W. and Benson (eds.). Plant-Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. Wiley & Sons, New York.

    Google Scholar 

  • Harborne, J. B., and Baxter, H. 1993. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants. Taylor & Francis Ltd., London.

    Google Scholar 

  • Honda, K. 1990. Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly, Papilio protenor. J. Chem. Ecol. 16:325–337

    Article  CAS  Google Scholar 

  • Honda, K. 1995. Chemical basis of differential oviposition by lepidopterous insects. Arch. Insect Biochem. Physiol. 30:1–23.

    Article  CAS  Google Scholar 

  • Honda, K. 2005. Larval feeding habit and host selection, pp. 255–301, in K. Honda, Y. Kato (eds.). Biology of Butterflies. University of Tokyo Press, Tokyo (in Japanese).

    Google Scholar 

  • Honda, K., and Hayashi, N. 1995a. Chemical factors in rutaceous plants regulating host selection by two swallowtail butterflies, Papilio protenor and P. xuthus (Lepidoptera:Papilionidae). Appl. Entomol. Zool. 30:327–334.

    CAS  Google Scholar 

  • Honda, K., and Hayashi, N. 1995b. A flavonoid glucoside, phellamurin, regulates differential oviposition on a rutaceous plant, Phellodendron amurense, by two sympatric swallowtail butterflies, Papilio protenor and P. xuthus: The front line of a coevolutionary arms race? J. Chem. Ecol. 21:1531–1539.

    Article  CAS  Google Scholar 

  • Honda, K., Ômura, H., Hori, M., and Kainoh, Y. 2010. Allelochemicals in plant-insect interactions, pp. 563–594, in L. Mander and H.-W. Lui (eds.). Comprehensive Natural Products II. Chemistry and Biology. Elsevier, Oxford.

    Chapter  Google Scholar 

  • Inoue, T. A. 2006. Morphology of foretarsal ventral surfaces of Japanese Papilio butterflies and relations between these morphology, phylogeny and hostplant preferring hierarchy. Zool. Sci. 23:169–189.

    Article  PubMed  Google Scholar 

  • Mercader, R. J., and Scriber, J. M. 2008. Divergence in the ovipositional behavior of the Papilio glaucus group. Insect Sci. 15:361–367.

    Article  Google Scholar 

  • Murakami, T., Honda, K., Nakayama, T., and Hayashi, N. 2003. Phytochemical-mediated differential acceptance of four rutaceous plants by a swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae). Appl. Entomol. Zool. 38:37–43.

    Article  Google Scholar 

  • Nakayama, T., Honda, K., and Hayashi, N. 2002. Chemical mediation of differential oviposition and larval survival on rutaceous plants in a swallowtail butterfly, Papilio polytes. Entomol. Exp. Appl. 105:35–42.

    Article  CAS  Google Scholar 

  • Nakayama, T., Honda, K., Ômura, H., and Hayashi, N. 2003. Oviposition stimulants for the tropical swallowtail butterfly, Papilio polytes, feeding on a rutaceous plant, Toddalia asiatica. J. Chem. Ecol. 29:1621–1634.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, R., Ohsugi, T., Kokubo, S., and Fukami, H. 1987. Oviposition stimulants of a Citrus-feeding swallowtail butterfly, Papilio xuthus L. Experientia 43: 342–344.

    Article  CAS  Google Scholar 

  • Nishida, R., Ohsugi, T., Fukami, H., and Nakajima, S. 1990. Oviposition deterrent of a Rutaceae-feeding swallowtail butterfly, Papilio xuthus, from a non-host rutaceous plant, Orixa japonica. Agric. Biol. Chem. 54:1265–1270.

    CAS  Google Scholar 

  • Ohsugi, T., Nishida, R., and Fukami, H. 1985. Oviposition stimulants of Papilio xuthus, a Citrus-feeding swallowtail butterfly. Agric. Biol. Chem. 49:1897–1900.

    CAS  Google Scholar 

  • Qiu, Y.-T., Van Loon, J. J. A., and Roessingh, P. 1998. Chemoreception of oviposition inhibiting terpenoids in the diamondback moth Plutella xylostella. Entomol. Exp. Appl. 87:143–155.

    Article  CAS  Google Scholar 

  • Renwick, J. A. A., and Chew, F. S. 1994. Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 39:377–400.

    Article  Google Scholar 

  • Ribeiro, A. B., Abdelnur, P. V., Garcia, C. F., Belini, A., Severino, V. G. P., Silva, M. F. das G. F. da, Fernandes, J. B., Vieira, P. C., De Carvalho, S. A., De Souza, A. A., and Machado, M. A. 2008. Chemical characterization of Citrus sinensis grafted on C. limonia and the effect of some isolated compounds on the growth of Xylella fastidiosa. J. Agric. Food Chem. 56:7815–7822.

  • Roessingh, P., Städler, E., Shöni, R., and Feeny, P. 1991. Tarsal contact chemoreceptors of the black swallowtail butterfly Papilio polyxenes: responses to phytochemicals from host- and non-host plants. Physiol. Entomol. 16: 485–495.

    Article  Google Scholar 

  • Ryan, M. F. 2002. Insect Chemoreception Fundamental and Applied. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Schoonhoven, L. M., and Fu-Shun, Y. 1989. Interference with normal chemoreceptor activity by some sesquiterpenoid antifeedants in an herbivorous insect Pieris brassicae. J. Insect Physiol. 35:725–728.

    Article  CAS  Google Scholar 

  • Schoonhoven, L. M., Van Loon, J.A.A., and Dicke, M. 2005. Insect-Plant Biology, 2nd Edition. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Scriber, J. M. 1995. Overview of swallowtail butterflies: Taxonomic and distributional latitude, pp. 3–8, in J. M. Scriber, Y. Tsubaki and R. C. Lederhouse (eds.). Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Scientific Publ., Gainesville.

    Google Scholar 

  • Scriber, J. M., Larsen, M. L., and Zalucki, M. P. 2007. Papilio aegeus Donovan (Lepidoptera: Papilionidae) host plant range evaluated experimentally on ancient angiosperms. Aust. J. Entomol. 46:65–74.

    Article  Google Scholar 

  • Scriber, J. M., Larsen, M. L., Allen, G. R., Walker, P. W., and Zalucki, M. P. 2008. Interactions between Papilionidae and ancient Australian angiosperms: evolutionary specialization or ecological monophagy? Entomol. Exp. Appl. 128:230–239.

    Article  Google Scholar 

  • Städler, E., Renwick, J. A. A., Radke, C. D., and Sachdev-Gupta, K. 1995. Tarsal contact chemoreceptor responses to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiol. Entomol. 20:175–187.

    Article  Google Scholar 

  • Thompson, J. N., Wehling, W., and Podolsky, R. 1990. Evolutionary genetics of host use in swallowtail butterflies. Nature, 344: 148–150.

    Article  Google Scholar 

  • Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., and Giammanco, M. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 104:466–479.

    Article  CAS  Google Scholar 

  • Van Loon, J. J. A. 1996. Chemosensory basis of feeding and oviposition behaviour in herbivorous insects: a glance at the periphery. Entomol. Exp. Appl. 80:7–13.

    Article  Google Scholar 

  • Yagi, T., Sasaki, G.., and Takebe, H. 1999. Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. J. Mol. Evol. 48:42–48.

    Article  PubMed  CAS  Google Scholar 

  • Zakharov, E. V., Caterino, M. S., and Sperling, F. A. 2004. Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst. Biol. 53:193–215.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to K. Honda (No. 14560039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Honda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, K., Ômura, H., Chachin, M. et al. Synergistic or Antagonistic Modulation of Oviposition Response of Two Swallowtail Butterflies, Papilio maackii and P. protenor, to Phellodendron amurense by Its Constitutive Prenylated Flavonoid, Phellamurin. J Chem Ecol 37, 575–581 (2011). https://doi.org/10.1007/s10886-011-9965-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9965-9

Key Words

Navigation