Advertisement

Volatile and Semivolatile Compounds in Gray Catbird Uropygial Secretions Vary with Age and Between Breeding and Wintering Grounds

  • Clara L. Shaw
  • Jordan E. Rutter
  • Amy L. Austin
  • Mary C. Garvin
  • Rebecca J. WhelanEmail author
Article

Abstract

The uropygial secretions of some bird species contain volatile and semivolatile compounds that are hypothesized to serve as chemical signals. The abundance of secretion components varies with age and season, although these effects have not been investigated in many species. We used solid-phase microextraction headspace sampling and solvent extraction coupled with gas chromatography–mass spectrometry to detect and identify volatile and semivolatile chemical compounds in uropygial secretions of gray catbirds (Dumetella carolinensis). We identified linear and branched saturated carboxylic acids from acetic (C2) through hexacosanoic (C26); linear alcohols from decanol (C10) through docosanol (C22); one aromatic aldehyde; one monounsaturated carboxylic acid; two methyl ketones; and a C28 ester. We tested for the effect of age on signal strength and found that juvenile birds produced greater amounts of volatile C4 through C7 acids and semivolatile C20 through C26 acids, although the variation among individuals was large. Adult birds displayed small concentrations and minimal individual variation among volatile compounds, but produced significantly higher levels of long-chain linear alcohols than juvenile birds. We tested for the effects of season/location by sampling adult catbirds at their Ohio breeding grounds and at their Florida wintering grounds and found that the heaviest carboxylic acids are significantly more abundant in secretions from birds sampled during winter at the Florida site, whereas methyl ketones are more abundant in birds sampled during summer on the Ohio breeding grounds. We observed no effect of sex on semivolatile compounds, but we found a significant effect of sex on levels of carboxylic acids (C4 through C7) for juvenile birds only.

Key Words

Gray catbird Dumetella carolinensis Solid-phase microextraction SPME Gas chromatography–mass spectrometry GC-MS Principal component analysis PCA Uropygial gland Preen gland 

References

  1. BOHNET, S., ROGERS, L., SASAKI, G., and KOLATTUKUDY, P. E. 1991. Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J. Biol. Chem. 266:9795–9804PubMedGoogle Scholar
  2. BONADONNA, F., MIGUEL, E., GROSBOIS, V., JOUVENTIN, P., and BESSIERE, J. 2007. Individual odor recognition in birds: an endogenous olfactory signature on petrels’ feathers? J. Chem. Ecol. 33: 1819–1829.PubMedCrossRefGoogle Scholar
  3. CIMPRICH, D. A., and MOORE, F. R. 1995. Gray Catbird (Dumetella carolinensis), in A. Poole, (ed.). The Birds of North America. No. 167. Cornell Lab of Ornithology, Ithaca, New York.Google Scholar
  4. GALVÁN, I., BARBA, E., PICULO, R., CANTÓ, J. L., CORTÉS, V., MONRÓS, J. S., ATIÉNZAR, F., and PROCTOR, H. 2008. Feather mites and birds: an interaction mediated by uropygial gland size? J. Evol. Biol. 21: 133–144PubMedGoogle Scholar
  5. GIRAUDEAU, M., DUVAL, C., GUILLON, N., BRETAGNOLLE, V., GUTIERREZ, C., and HEEB, P. 2010. Effects of access to preen gland secretions on mallard plumage. Naturwissenschaften 97: 577–581.PubMedCrossRefGoogle Scholar
  6. GRIFFITHS, R., DOUBLE, M. C., ORR, K., and DAWSON, R. J. G. 1998. A DNA test to sex most birds. Mol. Ecol. 7: 1071–1075.PubMedCrossRefGoogle Scholar
  7. HAGELIN, J. C., and JONES, I. L. 2007. Bird odors and other chemical substances: a defense mechanism or overlooked mode of intraspecific communication? Auk 124: 741–761.CrossRefGoogle Scholar
  8. HARIBAL, M., DHONDT, A., and RODRIGUEZ, E. 2009. Diversity in chemical compositions of preen gland secretions of tropical birds. Biochem. Syst. Ecol. 37: 80–90.CrossRefGoogle Scholar
  9. HWANG, Y. S., KRAMER, W. L., and MULLA, M. S. 1980. Oviposition attractants and repellents of mosquitoes: Isolation and identification of oviposition repellents for Culex mosquitoes. J. Chem. Ecol. 6: 71–80.CrossRefGoogle Scholar
  10. HWANG, Y., SCHULTZ, G. W., AXELROD, H., KRAMER, W. L., and MULLA, M. S. 1982. Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes. Environ. Entomol. 11: 223–226.Google Scholar
  11. HWANG, Y., SCHULTZ, G. W., and MULLA, M. S. 1984. Structure-activity relationship of unsaturated fatty acids as mosquito ovipositional repellents. J. Chem. Ecol. 10: 145–151.CrossRefGoogle Scholar
  12. JACOB, J. and ZISWILER, V. 1982. The uropygial gland, pp. 199–324, in D. S. Farner, J. R. King, and K. C. Parkes, (eds.). Avian Biology, Vol. 6. Academic Press, New York.Google Scholar
  13. KARLSSON, A. C., JENSEN, P., ELGLAND, M., LAUR, K., FYRNER, T., KONRADSSON, P., and LASKA, M. 2010. Red junglefowl have individual body odors. J. Exp. Biol. 213: 1619–1624.PubMedCrossRefGoogle Scholar
  14. KOLATTUKUDY, P. E., and SAWAYA, W. N. 1974. Age dependent structural changes in the diol esters of uropygial glands of chicken. Lipids 9:290–292PubMedCrossRefGoogle Scholar
  15. KRAMER, W. L., HWANG, Y., and MULLA, M. S. 1980. Oviposition repellents of mosquitoes: Negative responses elicited by lower aliphatic carboxylic acids. J. Chem. Ecol. 6: 415–424.CrossRefGoogle Scholar
  16. MARDON, J., SAUNDERS, S. M., ANDERSON, M. J., COUCHOUX, C., and BONADONNA, F. 2010. Species, gender, and identity: cracking petrels’ sociochemical code. Chem. Senses 35: 309–321.PubMedCrossRefGoogle Scholar
  17. MARTÍN-VIVALDI, M., PEÑA, A., PERALTA-SÁNCHEZ, J. M., SÁNCHEZ, L., ANANOU, S., RUIZ-RODRÍGUEZ, M., and SOLER, J. J., 2010. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B 277:123–130.PubMedCrossRefGoogle Scholar
  18. MONTALTI, D., GUTIÉRREZ, A. M., REBOREDO, G., and SALIBIÁN, A. 2005. The chemical composition of the uropygial gland secretion of rock dove Columba livia. Comp. Biochem. Physiol. A 140: 275–279.CrossRefGoogle Scholar
  19. PYLE, P. 1997. Identification Guide to the North American Birds. Slate Creek Press, Bolinas, CA.Google Scholar
  20. RENEERKENS, J., PIERSMA, T., and DAMSTÉ, J. S. S. 2002. Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proc. R. Soc. Lond. B 269: 2135–2139.CrossRefGoogle Scholar
  21. RENEERKENS, J., PIERSMA, T., and DAMSTÉ, J. S. S. 2005. Switch to diester preen waxes may reduce avian nest predation by mammalian predators using olfactory cues. J. Exp. Biol. 208:4199–4202.PubMedCrossRefGoogle Scholar
  22. RENEERKENS, J., ALMEIDA, J. B., LANK, D. B., JUKEMA, J., LANCTOT, R. B., MORRISON, R. I. G., RIJPSTRA, W. I. C., SCHAMEL, D., SCHEKKERMAN, H., DAMSTÉ, J. S. S., TOMKOVICH, P. S., TRACY, D. M., TULP, I., and PIERSMA, T. 2007. Parental role division predicts avian preen wax cycles. Ibis 149: 721–729.CrossRefGoogle Scholar
  23. SANDILANDS, V., POWELL, K., KEELING, L., and SAVORY. C. J. 2004. Preen gland function in layer fowls: Factors affecting preen oil fatty acid composition. Br. Poul. Sci. 45:109–115.CrossRefGoogle Scholar
  24. SOINI, H. A., SCHROCK, S. E., BRUCE, K. E., WIESLER, D., KETTERSON, E. D., and NOVOTNY, M. V. 2007. Seasonal variation in volatile compound profiles of preen gland secretions of the dark-eyed junco (Junco hyemalis). J. Chem. Ecol. 33:183–198.PubMedCrossRefGoogle Scholar
  25. WHELAN, R. J., LEVIN, T. C., OWEN, J. C., and GARVIN, M. C. 2010. Short-chain carboxylic acids from gray catbird (Dumetella carolinensis) uropygial secretions vary with testosterone levels and photoperiod. Comp. Biochem. Physiol. B 156:183–188.PubMedCrossRefGoogle Scholar
  26. WHITTAKER, D. J., REICHARD, D. G., DAPPER, A. L., and KETTERSON, E. D. 2009. Behavioral responses of nesting female dark-eyed juncos Junco hyemalis to hetero- and conspecific passerine preen oils. J. Avian Biol. 40:579–583.CrossRefGoogle Scholar
  27. WHITTAKER, D. J., SOINI, H. A., ATWELL, J. W., HOLLARS, C., NOVOTNY, M. V., and KETTERSON, E. D. 2010. Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav. Ecol. 21:608–614.CrossRefGoogle Scholar
  28. YAO, M., ROSENFELD, J., ATTRIDGE, S. SIDHU, S., AKSENOV, V. and ROLLO, C. D. 2009. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36:267–281.CrossRefGoogle Scholar
  29. ZHANG, J., SUN, L., and ZUO, M. 2009. Uropygial gland volatiles may code for olfactory information about sex, individual, and species in Bengalese finches Lonchura striata. Curr. Zoology 55: 357–365.Google Scholar
  30. ZHANG, J. X., WEI, W., ZHANG, J., and YANG, W. 2010. Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chem. Senses 35: 375–382.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Clara L. Shaw
    • 1
  • Jordan E. Rutter
    • 2
  • Amy L. Austin
    • 2
  • Mary C. Garvin
    • 2
  • Rebecca J. Whelan
    • 1
    Email author
  1. 1.Department of Chemistry and BiochemistryOberlin CollegeOberlinUSA
  2. 2.Department of BiologyOberlin CollegeOberlinUSA

Personalised recommendations