Journal of Chemical Ecology

, Volume 37, Issue 3, pp 232–238 | Cite as

Release of Hydrogen Cyanide via a Post-secretion Schotten-Baumann Reaction in Defensive Fluids of Polydesmoid Millipedes

  • Yasumasa KuwaharaEmail author
  • Nobuhiro Shimizu
  • Tsutomu Tanabe


Mandelonitrile benzoate, a minor defense component produced by polydesmoid millipedes, is produced in large amounts together with hydrogen cyanide following shake-disturbances administered to individuals of Nedyopus tambanus tambanus, Parafontaria tonominea, Epanerchodus sp., and Epanerchodus fulvus. These species commonly produce mandelonitrile and benzoyl cyanide (the oxidized product after discharge). The newly generated mandelonitrile benzoate was identified as a product of post secretion Schotten-Baumann reaction under basic conditions of bled bodily fluids (pH ca. 9.0), and was not an enzymatic reaction product. The reaction occurred in vitro even under less basic conditions [1M Tris-HCl buffer (pH 8.0)], and could be defined as a new mechanism of hydrogen cyanide release occurring in roughly half of polydesmoid millipedes. Species possessing no benzoyl cyanide, such as Oxidus gracilis and Cryptocorypha sp., could also produce mandelonitrile benzoate under conditions in which benzoyl cyanide was exogenously provided.

Key Words

Nedyopus tambanus tambanus Mandelonitrile benzoate Mandelonitrile Benzoyl cyanide Defense secretion Polydesmida Schotten-Baumann reaction 


  1. Conner, W. E., Jones, T. H., Eisner, T., and Meinwald, J. 1977. Benzoyl cyanide in the defensive secretion of polydesmoid millipedes. Experientia 33:206–207.PubMedCrossRefGoogle Scholar
  2. Duffey, S. S., and Towers, G. H. N. 1978. On the biochemical basis of hydrocyanic acid production in the millipede Harpaphe haydeniana (Xystodesmidae: Polydesmida). Can. J. Zool. 56:7–16.CrossRefGoogle Scholar
  3. Duffey, S. S., Underhill, E. W., and Towers, G. H. N. 1974. Intermediates in the biosynthesis of hydrogen cyanide and benzaldehyde by a polydesmid millipede Harpaphe haydeniana. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 47(B):753–766.Google Scholar
  4. Duffey, S. S., Blum, M. S., Fales, H. M., Evans, S. L., Roncadori, R. W., Tiemann, D. L., and Nakagawa, Y. 1977. Benzoyl cyanide and mandelonitrile benzoate in the defensive secretions of millipedes. J. Chem. Ecol. 3:101–113.CrossRefGoogle Scholar
  5. Eisner, T., Alsop, D., Hicks, K., and Meinwald, J. 1978. Defensive secretions of millipedes, pp. 41–72, in S. Bettini (ed.). Handbuch der Experimentellen Pharmakologie 48 (Arthropod Venoms). Springer-Verlag, Berlin.Google Scholar
  6. Kuerti, L., and Czako, B. 2005. Strategic Applications of Named Reactions in Organic Synthesis, Background and Detailed Mechanism. Elsevier Inc. Burlington (Translated version into Japanese, by TOMIOKA, K., Kagaku-dojin, 2006).Google Scholar
  7. Kuwahara, Y. 1999. Chemical defenses of millipedes, pp. 291–298, in T. Hidaka, Y. Matsumoto, K. Honda, H. Honda, and S. Tatsuki (eds.). Environmental Entomology, Behavior, Physiology and Chemical Ecology. The University of Tokyo Press, Tokyo, Japan (written in Japanese).Google Scholar
  8. Kuwahara, Y., Suzuki, H., Matsumoto, K., and Wada, Y. 1983. Pheromone study on acarid mites XI. Function of mite body as geometrical isomerization and reduction of citral (the alarm pheromone). Appl. Entomol. Zool. 18:30–39.Google Scholar
  9. Kuwahara, Y., Omura, H., and Tanabe, T. 2002. 2-Nitroethenylbenzene as natural products in millipede defense secretions. Naturwissenschaften 89:308–310.PubMedCrossRefGoogle Scholar
  10. Kuwahara, Y., Mori, N., Sakuma, M., and Tanabe, T. 2003. (1Z)- and (1E)-2-Nitroethenylbenzenes, and 2-nitroethylbenzene as natural products in defense secretions of a millipede Thelodesmus armatus Miyosi (Polydesmida: Pyrgodesmidae). Jpn. J. Environ. Entomol. Zool. 14:149–155.Google Scholar
  11. Kuwahara, Y., Shimizu, N., Sakamoto, F., and Tanabe, T. 2008. Mandelonitrile as the defense secretion, and phenylacetonitrile as its biosynthetic precursor in Nedyopus tambanus tambanus (Paradoxomatidae, Polydesmida). Jpn. J. Environ. Entomol. Zool. 19:79–84.Google Scholar
  12. Mori, N., Kuwahara, K., Yoshida, T., and Nishida, R. 1994. Identification of benzaldehyde, phenol and mandelonitrile from Epanerchodes japonicus Carl (Polidesmida: Polydesmidae) as possible defense substances. Appl. Entomol. Zool. 29:517–522.Google Scholar
  13. Mori, N., Kuwahara, Y., Yoshida, T., and Nishida, R. 1995. Mandelonitrile: major defense cyanogen from Parafontaria laminata armigera Verhoeff (Xystodesmidae: Polydesmida). Appl. Entomol. Zool. 30:197–202.Google Scholar
  14. Noge, K., Kato, M., Mori, N., Kataoka, M., Tanaka, C., Yamasue, Y., Nishida, R., and Kuwahara, Y. 2008. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae). FEBS J. 275:2807–2817.PubMedCrossRefGoogle Scholar
  15. Noguchi, S., Mori, N., Higa, Y., and Kuwahara, Y. 1997a. Identification of mandelonitrile as a major secretory compound from Chamberlinius hualienensis Wang (Polydesmida: Paradoxosomatidae). Jpn. J. Environ. Entomol. Zool. 8:208–214.Google Scholar
  16. Noguchi, S., Mori, N., Higa, Y., and Kuwahara, Y. 1997b. Identification of Nedyopus patrioticus patrioticus (Attems, 1898) (Polydesmida: Paradoxosomatidae) secretions as possible defense substances. Appl. Entomol. Zool. 32:447–452.Google Scholar
  17. Ômura, H., Kuwahara, Y., and Tanabe, T. 2002a. 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J. Chem. Ecol. 28:2601–2612.PubMedCrossRefGoogle Scholar
  18. Ômura, H., Kuwahara, Y., and Tanabe, T. 2002b. Species-specific chemical compositions of defense secretions from Parafontaria tonominea Attems and Riukiaria semicircularis semicircularis Takakuwa (Polydesmida: Xystodesmidae). Appl. Entomol. Zool. 37:73–78.CrossRefGoogle Scholar
  19. Taira, J., Nakamura, K., and Higa, Y. 2003. Identification of secretory compounds from the millipede, Oxidus gracilis C. L. Koch (Polydesmida: Paradoxosomatidae) and their variation in different habitats. Appl. Entomol. Zool. 38:401–404.CrossRefGoogle Scholar
  20. Wu, X., Burden, D. W., and Attygalle, A. B. 2007. Hydroquinones from defensive secretion of a giant pacific millipede, Acladocricus setigericus (Diplopoda: Spirobolida). Chemoecology 17:131–138.CrossRefGoogle Scholar
  21. Zagrobeiny, M., Bak, S., and Moller, B. L. 2008. Cyanogenesis in plants and arthropods. Phytochemistry 67:1457–1468.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yasumasa Kuwahara
    • 1
    Email author
  • Nobuhiro Shimizu
    • 1
  • Tsutomu Tanabe
    • 2
  1. 1.Faculty of Bioenvironmental ScienceKyoto Gakuen UniversityKameoka-shiJapan
  2. 2.Faculty of EducationKumamoto UniversityKumamoto-shiJapan

Personalised recommendations