Skip to main content
Log in

Composition of Extrafloral Nectar Influences Interactions between the Myrmecophyte Humboldtia brunonis and its Ant Associates

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Ant–plant interactions often are mediated by extrafloral nectar (EFN) composition that may influence plant visitation by ants. Over a 300 km range in the Indian Western Ghats, we investigated the correlation between the EFN composition of the myrmecophytic ant-plant Humboldtia brunonis (Fabaceae) and the number and species of ants visiting EFN. EFN composition varied among H. brunonis populations and between plant organs (floral bud vs. young leaf EFN). In general, EFN was rich in sugars with small quantities of amino acids, especially essential amino acids, and had moderate invertase activity. In experiments at the study sites with sugar and amino acid solutions and with leaf or floral bud EFN mimics, dominant EFN-feeding ants differentiated between solutions as well as between mimics. The castration parasite Crematogaster dohrni (northern study site) was the least selective and did not exhibit any clear feeding preferences, while the largely trophobiont-tending non-protective Myrmicaria brunnea (middle study site) preferred higher sucrose concentrations and certain essential/non-essential amino acid mixtures. The mutualistic Technomyrmex albipes (southern study site) preferred sucrose over glucose or fructose solutions and consumed the leaf EFN mimic to a greater extent than the floral bud EFN mimic. This young leaf EFN mimic had low sugar concentrations, the lowest viscosity and sugar:amino acid ratio, was rich in essential amino acids, and appeared ideally suited to the digestive physiology of T. albipes. This preference for young leaf EFN may explain the greater protection afforded to young leaves than to floral buds by T. albipes, and may also help to resolve ant–pollinator conflicts. The differential response of dominant ants to sugar, amino acids, or solution viscosity suggests that plants can fine-tune their interactions with local ants via EFN composition. Thus, EFN can mediate local partner-choice mechanisms in ant–plant interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26:32–46.

    Google Scholar 

  • Baker, H. G., Opler, P. A., and Baker, I. 1978. A comparison of the amino acid complements of floral and extrafloral nectars. Bot. Gaz. 139:322–332.

    Article  CAS  Google Scholar 

  • Basu, P. 1997. Seasonal and spatial patterns in ground foraging ants in a rain forest in the Western Ghats, India. Biotropica 29:489–500.

    Article  Google Scholar 

  • Blüthgen, N., and Fiedler, K. 2004. Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J. Anim. Ecol. 73:155–166.

    Article  Google Scholar 

  • Blüthgen, N., Gottsberger, G., and Fiedler, K. 2004. Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecol. 29:418–429.

    Article  Google Scholar 

  • Blüthgen, N., Verhaagh, M., Goitía, W., Jaffé, K., Morawetz, W., and Barthlott, W. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125:229–240.

    Article  Google Scholar 

  • Caldwell, D. I., and Gerhardt, K. O. 1986. Chemical analysis of peach extrafloral nectary exudate. Phytochemistry 25:41–43.

    Article  Google Scholar 

  • Chamberlain, S. A., and Holland, J. N. 2008. Density-mediated context-dependent consumer-resource interactions between ants and extrafloral nectar plants. Ecology 89:1364–1374.

    Article  PubMed  Google Scholar 

  • Cook, S. C., and Davidson, D. W. 2006. Nutritional and functional biology of exudate-feeding ants. Entomol. Exp. Appl. 118:1–10.

    Article  Google Scholar 

  • Davidson, D. W. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn.Soc. 61:153–181.

    Article  Google Scholar 

  • Davidson, D. W., and Cook, S. C. 2008. Tropical arboreal ants: linking nutrition to roles in rainforest ecosystems. pp. 334–348 in W. CARSON and S. SCHNITZER (eds.). Tropical Forest Community Ecology. Wiley-Blackwell, UK.

    Google Scholar 

  • Davidson, D. W., and McKey, D. B. 1993. The evolutionary ecology of symbiotic ant-plant relationships. J. Hymen. Res. 2:13–83.

    Google Scholar 

  • Davidson, D. W., Cook, S. C., and Snelling, R. R. 2004. Liquid-feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139:255–266.

    Article  PubMed  Google Scholar 

  • Detrain, C., Verheggen, F. J., Diez, L., Wathelet, B., and Haubruge, E. 2010. Aphid–ant mutualism: how honeydew sugars influence the behaviour of ant scouts. Physiol. Entomol. 35:168–174.

    Article  Google Scholar 

  • Gaume, L., Zacharias, M., and Borges, R. M. 2005a. Ant–plant conflicts and a novel case of castration parasitism in a myrmecophyte. Evol. Ecol. Res. 7:435–452.

    Google Scholar 

  • Gaume, L., Zacharias, M., Grosbois, V., and Borges, R. M. 2005b. The fitness consequences of bearing domatia and having the right ant partner: experiments with protective and non-protective ants in a semi-myrmecophyte. Oecologia 145:76–86.

    Article  PubMed  Google Scholar 

  • Gaume, L., Shenoy, M., Zacharias, M., and Borges, R. M. 2006. Co-existence of ants and an arboreal earthworm in a myrmecophyte of the Indian Western Ghats: anti-predation effect of the earthworm mucus. J. Trop. Ecol. 22:1–4.

    Article  Google Scholar 

  • González-Teuber, M., and Heil, M. 2009a. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Sign. Behav. 4:1–5.

    Article  Google Scholar 

  • González-Teuber, M., and Heil M. 2009b. The role of extrafloral nectar amino acids for the references of facultative and obligate ant mutualists. J. Chem. Ecol. 35:459–468.

    Article  PubMed  Google Scholar 

  • Heil, M., and McKey, D. B. 2003. Protective ant–plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. Syst. 34:425–453.

    Article  Google Scholar 

  • Heil, M., Fiala, B., Baumann, B., and Linsenmair, K. E. 2000. Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Func. Ecol. 14:749–757.

    Article  Google Scholar 

  • Heil, M., Rattke, J., and Boland, W. 2005. Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M., González-Teuber, M., Clement, L. W., Kautz, S., Verhaagh, M., and Silva-Bueno, J. C. 2009. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc. Natl. Acad. Sci. USA 43:18091–18096.

    Article  Google Scholar 

  • Herrera, C.M., Pérez, R., and Alonso, C. 2006. Extreme intraplant variation in nectar sugar composition in an insect-pollinated perennial herb. Am. J. Bot. 93:575–581.

    Article  PubMed  Google Scholar 

  • Inouye, D. W., and Inouye R. S. 1980. The amino acids of extrafloral nectar from Helianthella quinquenervis (Asteraceae). Am. J. Bot. 67:1394–1396.

    Article  CAS  Google Scholar 

  • Kay, A. 2004. The relative availabilities of complementary resources affect the feeding preferences of ant colonies. Behav. Ecol. 15:63–70.

    Article  Google Scholar 

  • Keeler, K. H. 1977. The extrafloral nectaries of Ipomoea carnea (Convolvulaceae). Am. J. Bot. 64:1182–1188.

    Article  Google Scholar 

  • Koptur, S. 1979. Facultative mutualism between weedy vetches bearing extrafloral nectaries and weedy ants in California. Am. J. Bot. 66:1016–1020.

    Article  Google Scholar 

  • Koptur, S. 1992. Extrafloral nectary-mediated interactions between insects and plants. pp. 81–129 in E. A. BERNAYS (ed.). Insect-Plant Interactions. CRC Press, Boca Raton.

    Google Scholar 

  • Koptur, S. 1994. Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of their constituents and composition. Biotropica 26:276–284.

    Article  Google Scholar 

  • Koptur, S., and Truong, N. 1998. Facultative ant–plant interactions: nectar sugar preferences of introduced pest ant species in south Florida. Biotropica 30:179–189.

    Article  Google Scholar 

  • Kost, C., and Heil, M. 2005. Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl. Ecol. 6:237–248.

    Article  Google Scholar 

  • Lanza, J. 1988. Ant preferences for Passiflora nectar mimics that contain amino acids. Biotropica 20:341–344.

    Article  Google Scholar 

  • Lanza, J., Smith, G. C., Sack, S., and Cash, A. 1995. Variation in nectar volume and composition of Impatiens capensis at the individual, plant, and population levels. Oecologia 102:113–119.

    Google Scholar 

  • McKey, D. B. 1994. Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. pp. 211–228 in J. I. SPRENT AND D. McKey (eds.). Advances in Legume Systematics, Part 5. Royal Botanic Gardens, Kew, U. K.

    Google Scholar 

  • Ness, J. H. 2006. A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514.

    Article  Google Scholar 

  • Ness, J. H., Morris, W. F., and Bronstein, J. L. 2009. For ant-protected plants, the best defense is a hungry offense. Ecology 90:2823–2831.

    Article  PubMed  CAS  Google Scholar 

  • Nicklen, E. F, and Wagner, D. 2006. Conflict resolution in an ant–plant interaction: Acacia constricta traits reduce ant costs to reproduction. Oecologia 148:81–87.

    Article  PubMed  Google Scholar 

  • Nicolson, S. W. 2007. Amino acid concentrations in the nectars of Southern African bird-pollinated flowers, especially Aloe and Erythrina. J. Chem. Ecol. 33:1707–1720.

    Article  PubMed  CAS  Google Scholar 

  • Oksanen, J., Blanchet F. G., Kindt R., Legendre P., O’hara R. B., Simpson G. L., Solymos P., Stevens M. H. H, and Wagner H. 2011. Vegan: community ecology package. Version 1.17-4. http://cran.r-project.org/web/packages/vegan

  • Palmer, T. M., and Brody, A. K. 2007. Mutualism as reciprocal exploitation: African plant-ants defend foliar but not reproductive structures. Ecology 88:3004–3011.

    Article  PubMed  Google Scholar 

  • Pate, J. S., Peoples, M. B., Storer, P. J., and Atkins, C. A. 1985. The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of solutes, and nectary functioning. Planta 166:28–38.

    Article  CAS  Google Scholar 

  • Raine, N. E., Willmer, P., and Stone, G. N. 2002. Spatial structuring and floral avoidance behavior prevent ant–pollinator conflict in a Mexican ant-acacia. Ecology 83:3086–3096.

    Google Scholar 

  • Ramesh, B. R., and Pascal, J. P. 1997. Atlas of Endemics of the Western Ghats (India): Distribution of Tree Species in the Evergreen and Semi-evergreen Forests. French Institute of Pondicherry, Pondicherry, India.

    Google Scholar 

  • Rudgers, J. A., and Gardener, M. C. 2004. Extrafloral nectar as a resource mediating multispecies interactions. Ecology 85:1495–1502.

    Article  Google Scholar 

  • Rudgers, J. A., Savage, A. M., and Rúa, M. A. 2010. Geographic variation in a facultative mutualism: consequences for local arthropod composition and diversity. Oecologia 163:985–996.

    Article  PubMed  Google Scholar 

  • Schemske, D. W. 1982. Ecological correlates of a neotropical mutualism: ant assemblages at Costus extrafloral nectaries. Ecology 63:932–941.

    Article  Google Scholar 

  • Schroder, D., Deppisch, H., Obermayer, M., Krohne, G., Stackebrandt, E., Hölldobler, B., Goebel, W., and Gross, R. 1996. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol. Microbiol. 21:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Shenoy, M. and Borges, R. M. 2010. Geographical variation in an ant–plant interaction correlates with domatia occupancy, local ant diversity and interlopers. Biol. J. Linn. Soc. 100:538–551.

    Article  Google Scholar 

  • Simpson S. J., and Raubenheimer, D. 1996. Feeding behaviour, sensory physiology and nutrient feedback: a unifying model. Entomol. Exp. Appl. 80:55–64.

    Article  CAS  Google Scholar 

  • Tinti, J. M., and Nofre, C. 2001. Responses of the ant Lasius niger to various compounds perceived as sweet in humans: a structure-activity relationship study. Chem. Senses 26:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Völkl, W., Woodring, J., Fischer, M., Lorenz, M. W., and Hoffmann, K. H. 1999. Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491.

    Article  Google Scholar 

  • Wagner, D., and Nicklen, E. F. 2010. Ant nest location, soil nutrients and ant-associated plants: does extrafloral nectar attract ant nests and thereby enhance plant nutrition? J. Ecol. 98:614–624.

    Article  Google Scholar 

  • Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H., and Völkl, W. 2004. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol. Entomol. 29:311–319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Environment and Forests, Government of India. We are grateful to T. M. Musthak Ali for ant identification. We thank Anupama, Karthik, Megha, Priya, Shaji, Sivan, Sudheesh, and G. Yathiraj for assistance, P. Balaram and S. Chandrasekaran for help with the GC-MS analysis, and the Karnataka Forest Department for research permissions. We are especially grateful to Yuvaraj Ranganathan for doing the multivariate analyses and for help with the final figures. We thank Judie Bronstein, Doyle McKey, Martin Heil, and an anonymous reviewer for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee M. Borges.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 396 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, M., Radhika, V., Satish, S. et al. Composition of Extrafloral Nectar Influences Interactions between the Myrmecophyte Humboldtia brunonis and its Ant Associates. J Chem Ecol 38, 88–99 (2012). https://doi.org/10.1007/s10886-011-0052-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-0052-z

Key Words

Navigation