Journal of Chemical Ecology

, Volume 37, Issue 12, pp 1323–1331 | Cite as

Floral Odor Bouquet Loses its Ant Repellent Properties After Inhibition of Terpene Biosynthesis

  • Robert R. Junker
  • Jonathan Gershenzon
  • Sybille B. Unsicker
Article

Abstract

In their natural environment, plants are synchronously confronted with mutualists and antagonists, and thus benefit from signals that contain messages for both functional groups of interaction partners. Floral scents are complex blends of volatiles of different chemical classes, including benzenoids and terpenoids. It has been hypothesized that benzenoids have evolved as pollinator attracting signals, while monoterpenoids serve as defensive compounds against antagonists. In order to test this hypothesis, we reduced terpene emission in flowers of Phlox paniculata with specific biosynthetic inhibitors and compared the responses of Lasius niger ants to natural and inhibited floral scent bouquets. While the natural odors were strongly repellent to ants, the bouquets with a reduced emission rate of terpenoids were not. The loss of the flowers’ ability to repel ants could be attributed predominantly to reduced amounts of linalool, a monoterpene alcohol. Flying flower visitors, mainly hoverflies, did not discriminate between the two types of flowers in an outdoor experiment. Since individual compounds appear to be capable of either attracting pollinators or defending the flower from enemies, the complexity of floral scent bouquets may have evolved to allow flowers to respond to both mutualists and antagonists simultaneously.

Key Words

Biochemical pathways Floral volatiles Direct defense Lasius niger Olfactometer experiments Phlox paniculata 

References

  1. Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed. Allured Publishing Corporation, Carol Stream, Illinois.Google Scholar
  2. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot. J. Linn. Soc. 140:129–153.CrossRefGoogle Scholar
  3. Berglund, A., Bisazza, A., and Pilastro, A. 1996. Armaments and ornaments: an evolutionary explanation of traits of dual utility. Biol. J. Linn. Soc. 58:385–399.CrossRefGoogle Scholar
  4. Bleil, R., Blüthgen, N., and Junker, R. R. 2011. Ant-plant mutualism in Hawaii? Invasive ants reduce flower parasitism but also exploit floral nectar of the endemic shrub Vaccinium reticulatum (Ericaceae). Pac. Sci. 65:291–300.CrossRefGoogle Scholar
  5. Breiman, L. 2001. Random forests. Mach. Learn 45:5–32.CrossRefGoogle Scholar
  6. Breiman, L. 2003. Manual--Setting Up, Using, And Understanding Random Forests V4.0. ftp://ftp.stat.berkeley.edu/pub/users/breiman//Using_random_forests_v4.0.pdf.
  7. Cane, J. H. 1986. Predator deterrence by mandibular gland secretions of bees (Hymenoptera, Apoidea). J. Chem. Ecol. 12:1295–1309.CrossRefGoogle Scholar
  8. Cunningham, J. P., Moore, C. J., Zalucki, M. P., and West, S. A. 2004. Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207:87–94.PubMedCrossRefGoogle Scholar
  9. Dobson, H. E. M. 2006. Relationship between floral fragrance composition and type of pollinator. pp. 147-198 in Biology of Floral Scent (eds N. Dudareva and E. Pichersky). CRC Press, Boca Raton.Google Scholar
  10. Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weissbecker, B., and Schütz, S. 2006. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol. 169:707–718.PubMedCrossRefGoogle Scholar
  11. Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., and Gershenzon, J. 2005. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. USA 102:933–938.PubMedCrossRefGoogle Scholar
  12. DUDAREVA, N. and PICHERSKY, E. 2006. Biology of Floral Scent. CRC Press, Boca Raton, FL, USA.Google Scholar
  13. Galen, C. 1983. The effects of nectar thieving ants on seedset in floral scent morphs of Polemonium viscosum. Oikos 41:245–249.CrossRefGoogle Scholar
  14. Gershenzon, J. and Dudareva, N. 2007. The function of terpene natural products in the natural world. Nature Chem. Biol. 3:408–414.CrossRefGoogle Scholar
  15. Gomez, J. M. 2000. Effectiveness of ants as pollinators of Lobularia maritima: effects on main sequential fitness components of the host plant. Oecologia 122:90–97.CrossRefGoogle Scholar
  16. Gomez, J. M. and Zamora, R. 1992. Pollination by ants: consequences of quantitative effects on a mutualistic system. Oecologia 91:410–418.CrossRefGoogle Scholar
  17. Junker, R. R., Bleil, R., Daehler, C. C., and Blüthgen, N. 2010a. Intra-floral resource partitioning between endemic and invasive flower visitors: consequences for pollinator effectiveness. Ecol. Entomol. 35:760–767.CrossRefGoogle Scholar
  18. Junker, R. R. and Blüthgen, N. 2008. Floral scents repel potentially nectar-thieving ants. Evol. Ecol. Res. 10:295–308.Google Scholar
  19. Junker, R. R. and Blüthgen, N. 2010a. Dependency on floral resources determines the animals’ responses to floral scents. Plant Signal. Behav. 5:1014–1016.PubMedCrossRefGoogle Scholar
  20. Junker, R. R. and Blüthgen, N. 2010b. Floral scents repel facultative flower visitors, but attract obligate ones. Ann. Bot. 105:777–782.PubMedCrossRefGoogle Scholar
  21. Junker, R. R., Daehler, C. C., Dötterl, S., Keller, A., and Blüthgen, N. 2011a. Hawaiian ant-flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecol. Monogr. 81:295–311.CrossRefGoogle Scholar
  22. Junker, R. R., Höcherl, N., and Blüthgen, N. 2010b. Responses to olfactory signals reflect network structure of flower-visitor interactions. J. Anim. Ecol. 79:818–823.PubMedGoogle Scholar
  23. Junker, R. R., Loewel, C., Gross, R., Dötterl, S., Keller, A., and Blüthgen, N. 2011b. Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol. 13:918–924.Google Scholar
  24. Kessler, A. and Halitschke, R. 2009. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct. Ecol. 23:901–912.CrossRefGoogle Scholar
  25. Kessler, D. and Baldwin, I. T. 2007. Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J. 49:840–854.PubMedCrossRefGoogle Scholar
  26. Kessler, D., Gase, K., and Baldwin, I. T. 2008. Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202.PubMedCrossRefGoogle Scholar
  27. Kita, T., Brown, M. S., and Goldstein, J. L. 1980. Feedback-regulation of 3-hydroxy-3-methyglutaryl coenzyme a reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J. Clin. Invest. 66:1094–1100.PubMedCrossRefGoogle Scholar
  28. Knudsen, J. T., Eriksson, R., Gershenzon, J., and Stahl, B. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1–120.CrossRefGoogle Scholar
  29. Lach, L. 2005. Interference and exploitation competition of three nectar-thieving invasive ant species. Insect. Soc. 52:257–262.CrossRefGoogle Scholar
  30. Laloi, D., Bailez, O., Blight, M. M., Roger, B., Pham-Delegue, M.-H., and Wadhams, L. J. 2000. Recognition of complex odors by restrained and free-flying honeybees, Apis mellifera. J. Chem. Ecol. 26:2307–2319.CrossRefGoogle Scholar
  31. Mumm, R., Posthumus, M. A., and Dicke, M. 2008. Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant Cell Environ. 31:575–585.PubMedCrossRefGoogle Scholar
  32. Pettersson, J. 1970. An aphid sex attractant. I. Biological studies. Entomol. Scand. 1:63–73.CrossRefGoogle Scholar
  33. Prasad, A. M., Iverson, L. R., and Liaw, A. 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 9:181–199.CrossRefGoogle Scholar
  34. R DEVELOPMENT CORE TEAM 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  35. Raguso, R. A. 2008a. Start making scents: the challenge of integrating chemistry into pollination ecology. Entomol. Exp. Appl. 128:196–207.CrossRefGoogle Scholar
  36. Raguso, R. A. 2008b. Wake up and smell the roses: The ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39:549–69.CrossRefGoogle Scholar
  37. Ranganathan, Y. and Borges, R. M. 2010. Reducing the babel in plant volatile communication: using the forest to see the trees. Plant Biol. 12:735–742.PubMedCrossRefGoogle Scholar
  38. Reinhard, J., Sinclair, M., Srinivasan, M. V., and Claudianos, C. 2010. Honeybees learn odour mixtures via a selection of key odorants. PLoS One 5.Google Scholar
  39. Riffell, J. A., Lei, H., Christensen, T. A., and Hildebrand, J. G. 2009. Characterization and coding of behaviorally significant odor mixtures. Curr. Biol. 19:335–340.PubMedCrossRefGoogle Scholar
  40. Scanion, J. T. and Willis, D. E. 1985. Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23:333–340.Google Scholar
  41. Schie, C. C. N. V., Haring, M. A., and Schuurink, R. C. 2006. Regulation of terpenoid and benzenoid production in flowers. Curr. Opin. Plant Biol. 9:203–208.PubMedCrossRefGoogle Scholar
  42. Schiestl, F. P. 2010. The evolution of floral scent and insect chemical communication. Ecol. Lett. 13:643–656.PubMedCrossRefGoogle Scholar
  43. Schiestl, F. P., Huber, F. K., and Gomez, J. M. 2011. Phenotypic selection on floral scent: trade-off between attraction and deterrence? Evol. Ecol. 25:237–248.CrossRefGoogle Scholar
  44. Smith, B. H., Wright, G. A., and Daly, K. C. 2006. Learning-based recognition and discrimination of floral odors. pp. 263-296 in Biology of Floral Scent (eds N. Dudareva and E. Pichersky). CRC Press, Boca Raton.Google Scholar
  45. Stringer, L. D., El-Sayed, A. M., Cole, L. M., Manning, L. A. M., and Suckling, D. M. 2008. Floral attractants for the female soybean looper, Thysanoplusia orichalcea (Lepidoptera: Noctuidae). Pest Manag. Sci. 64:1218–1221.PubMedCrossRefGoogle Scholar
  46. Unsicker, S. B., Kunert, G., and Gershenzon, J. 2009. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr. Opin. Plant Biol. 12:1–7.CrossRefGoogle Scholar
  47. Willmer, P. G., Nuttman, .C. V, Raine, N. E., Stone, G. N., Pattrick, J. G., Henson, K., Stillman, P., McIlroy, L., Potts, S. G., and Knudsen, J. T. 2009. Floral volatiles controlling ant behaviour. Funct. Ecol. 23:888–900.CrossRefGoogle Scholar
  48. Wright, G. A. and Schiestl, F. P. 2009. The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 23:841–851.CrossRefGoogle Scholar
  49. Yano, S. 1994. Flower nectar of an autogamous perennial Rorippa indica as an indirect defense-mechanism against herbivorous insects. Res. Popul. Ecol. 36:63–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Robert R. Junker
    • 1
  • Jonathan Gershenzon
    • 2
  • Sybille B. Unsicker
    • 2
  1. 1.Department Biology, Institute of Sensory EcologyHeinrich-Heine-University of DüsseldorfDüsseldorfGermany
  2. 2.Max Planck Institute for Chemical EcologyJenaGermany

Personalised recommendations