Skip to main content

Advertisement

Log in

Argentine Ant Trail Pheromone Disruption is Mediated by Trail Concentration

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Argentine ant trail pheromone disruption, using continuous release of the trail pheromone compound (Z)-9-hexadecanal, reduces the incidence of trails and foraging rates of field populations. However, little is known about the concentrations of pheromone required for successful disruption. We hypothesized that higher pheromone quantities would be necessary to disrupt larger ant populations. To test this, we laid a 30-cm long base trail of (Z)-9-hexadecanal on a glass surface at low and high rates (1 and 100 pg/cm) (Trail 1), and laid a second, shorter trail (Trail 2, 10 cm long, located 1.5 cm upwind) near the middle of Trail 1 at six rates (1, 10, 100, 1,000, 10,000, and 100,000 pg/cm). We then recorded and digitized movements of individual ants following Trail 1, and derived a regression statistic, r 2, as an index of trail integrity, and also recorded arrival success at the other end of the trail (30 cm) near a food supply. Disruption of trails required 100 fold more pheromone upwind, independent of base-trail concentration. This implies that in the field, trail disruption is likely to be less successful against high ant-trail densities (greater concentration of trail pheromone), and more successful against newly formed or weak trails, as could be expected along invasion fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aron, S., Keller, L., and Passera, L. 2001. Role of resource availability on sex, caste and reproductive allocation ratios in the Argentine ant Linepithema humile. J. Anim. Ecol. 70:831–839.

    Article  Google Scholar 

  • Banks, W. A., Lofgren, C. S., Jouvenaz, D. P., Stringer, C. E., Bishop, P. M., Williams, D. F., Wojcik, D. P., and Glancey, B. M. 1981. Techniques for collecting, rearing, and handling imported fire ants. USDA, SEA, AATS-S-21, 9 p.

  • Bartell, R. J. 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: A review. Physiol. Entomol. 7:353–364.

    Article  CAS  Google Scholar 

  • Bartell, R. J. and Lawrence, L. A. 1973. Reduction in responsiveness of males of Epiphyas postvittana (Lepidoptera) to sex pheromone following previous brief pheromonal exposure. J. Insect Behav. 19:845–855.

    CAS  Google Scholar 

  • Brown, W. L. 1961. Mass insect control programs: Four case histories. Psyche 68:76–109.

    Google Scholar 

  • Cavill, G. W. K., Robertson, P. L., and Davies, N. W. 1979. An Argentine ant Iridomyrmex humilis aggregation factor. Experientia (Basel) 35:989–990.

    Article  CAS  Google Scholar 

  • Deneubourg, J. L., Aron, S Goss, S., and Pasteels, J. M. 1990. The self-organizing exploratory pattern of the Argentine ant. J. Insect Behav. 3:159–168.

  • El-Sayed, A. M. 2011. The Pherobase: Database of Insect Pheromones and semiochemicals. http://www.pherobase.com. Accessed May 1 2011.

  • Evershed, R. P., Morgan, E. D., and Cammaerts, M. C. 1982. 3-Ethyl-2,5-dimethylpyrazine, the trail pheromone from the venom gland of eight species of myrmica ants. Insect Biochem. 12:383–391.

    Article  CAS  Google Scholar 

  • Greenberg, L., Klotz, J. H., and Rust, M. K. 2006. Liquid borate bait for control of the Argentine ant, Linepithema humile, in organic citrus (Hymenoptera: Formicidae). Fla. Entomol. 89:469–474.

    Article  CAS  Google Scholar 

  • Greenberg, L., and Klotz, J. H. 2000. Argentine ant (Hymenoptera: Formicidae) trail pheromone enhances consumption of liquid sucrose solution. J. Econ. Entomol. 93:119–22.

    Article  PubMed  CAS  Google Scholar 

  • Hangartner, W. 1967. Specificity and inactivation of trail pheromone in Lasius fuliginosus Latr. and orientation of ant workers in scent field. Zeitsch. Vergleich. Physiol. 57:103–136.

    Article  Google Scholar 

  • Hooper-Bui, L. M. and Rust, M. K. 2000. Oral toxicity of abamectin, boric acid, fipronil, and hydramethylnon to laboratory colonies of Argentine ants (Hymenoptera: Formicidae). J. Econ. Entomol. 93:858–864.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D. E. and Châline, N. 2007. Modulation of pheromone trail strength with food quality in Pharaoh’s ant, Monomorium pharaonis. Anim. Behav. 74:463–470.

    Article  Google Scholar 

  • Klotz, J., Greenberg, L., and Venn, E. C. 2000. Evaluation of two hydramethylnon granular baits for control of Argentine ant (Hymenoptera: Formicidae). Sociobiology 36:201–207.

    Google Scholar 

  • Krushelnycky, P. D. and Reimer, N. J. 1998. Efficacy of Maxforce bait for control of the Argentine ant (Hymenoptera: Formicidae) in Haleakala National Park, Maui, Hawaii. Environ. Entomol. 27:1473–1481.

    CAS  Google Scholar 

  • Lowe, S., Browne, M., Boudjelas, S., and De Poorter, M. 2000. 100 of the world’s worst invasive species. Aliens 12:s1-s12.

    Google Scholar 

  • Minks, A. K. and Cardé, R. T. 1988. Disruption of pheromone communication in moths: is the natural blend really most efficacious? Entomol. Exp. Appl. 49:25–36.

    Google Scholar 

  • Morgan, E. D., Keegans, S. J., Tits J., Wenseleers, T., and Billen, J. 2006. Preferences and differences in the trail pheromone of the leaf-cutting ant Atta sexdens sexdens (Hymenoptera: Formicidae). Eur. J. Entomol. 103:553–558.

    Google Scholar 

  • Nesbitt, B. F., Beevor, P. S., Hall, D. R., Lester, R., and Dyck, V. A. 1975. Identification of the female sex pheromones of the moth, Chilo suppressalis. J. Insect Physiol. 21:1883–1886.

    Article  CAS  Google Scholar 

  • Nishisue, K., Sunamura, E., Tanaka, Y., Sakamoto, H., Suzuki, S., Fukumoto, T., Terayama, M., and Tatsuki, S. 2010. Long-term field trial to control the invasive argentine ant (Hymenoptera: Formicidae) with synthetic trail pheromone. J. Econ. Entomol. 103: 1784–1789.

    Article  PubMed  CAS  Google Scholar 

  • Rumbo, E. R. and Vickers, R. A. 1997. Prolonged adaptation as a possible mating disruption mechanism in Oriental fruit moth,Cydia (=Grapholitha) molesta. J. Chem. Ecol. 23: 445–457.

    Article  CAS  Google Scholar 

  • Schofield, S. W., Justus, K. A., Mafra-Neto, A., and Cardé. R, T. 2003. Flight of male Cadra cautella along plumes of air and pheromone superimposed on backgrounds of pheromone. Entomol. Exp. Appl. 109:173–181.

  • Suckling, D. M., Peck, R. W., Manning, L. M., Stringer, L. D., Cappadonna, J., and El-Sayed, A. M. 2008. Pheromone disruption of Argentine ant trail integrity. J. Chem. Ecol. 34:1602–1609.

    Article  PubMed  CAS  Google Scholar 

  • Suckling, D. M., Peck, R. W., Stringer, L. D., Snook, K., and Banko, P. C. 2010a. Trail pheromone disruption of Argentine ant trail formation and foraging. J. Chem. Ecol. 36:122–128.

    Article  PubMed  CAS  Google Scholar 

  • Sunamura, E., Suzuki, S., Nishisue, K., Sakamoto, H., Otsuka, M., Utsumi, Y., Mochizuki, F., Fukumoto, T., Ishikawa, Y., Terayama, M., and Tatsuki, S. 2011. Combined use of a synthetic trail pheromone and insecticidal bait provides effective control of an invasive ant. Pest Man. Sci.: early online.

  • Tanaka, Y., Nishisue, K., Sunamura, E., Suzuki, S., Sakamoto, H., Fukumoto, T., Terayama, M., and Tatsuki, S. 2009. Trail-following disruption in the invasive Argentine ant with a synthetic trail pheromone component (Z)-9-hexadecenal. Sociobiology 54:139–152.

    Google Scholar 

  • Tatsuki, S., Teryama, M., Tanaka, Y., and Fukumoto, T. 2005. Behavior-disrupting agent and behavior disrupting method of Argentine ant. Patent pub. no. US2005/0209344A1.

  • Van Vorhis Key, S. E., Gaston, L. K., and Baker, T. C. 1981. Effects of gaster extract trail concentration on the trail following behavior of the Argentine ant, Iridomyrmex humilis (Mayr). J. Insect Physiol. 27:363–370.

    Article  Google Scholar 

  • Van Vorhis Key, S. E. and Baker, T. C. 1982a. Specificity of laboratory trail following by the Argentine ant, Iridomyrmex humilis (Mayr), to (Z)-9-hexadecenal, analogs, and gaster extract. J. Chem. Ecol. 8:1057–1063.

    Article  Google Scholar 

  • Van Vorhis Key, S. E. and Baker, T. C. 1982b. Trail-following responses of the Argentine ant, Iridomyrmex humilis (Mayr), to a synthetic trail pheromone component and analogs. J. Chem. Ecol. 8:3–14.

    Article  Google Scholar 

  • Van Vorhis Key, S. E. and Baker, T. C. 1982c. Trail pheromone-conditioned anemotaxis by the Argentine ant, Iridomyrmex humilis. Entomol. Exp. Appl. 32:232–237.

    Article  Google Scholar 

  • Van Vorhis Key, S. E. and Baker, T. C. 1986. Observations on the trail deposition and recruitment behaviors of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 79:283–288.

    Google Scholar 

  • van Wilgenburg, E., Torres, C. W. and Tsutsui, N. D. 2010. The global expansion of a single ant supercolony. Evol. Applic. 3:136–143.

    Article  Google Scholar 

  • Wall, C. and Perry, J. N. 1981. Effects of dose and attractant on interactions between pheromone traps for the pea moth, Cydia nigricana. Entomol. Exp. Appl. 30: 26–30.

    Article  CAS  Google Scholar 

  • Witzgall, P., Kirsch, P., and Cork, A. 2010. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36:80–100.

    Article  PubMed  CAS  Google Scholar 

  • Zhakharov, A. A. and Thompson, L. C. 1998. Effects of repeated use of fenoxycarb and hydramethylnon baits on nontarget ants. J. Entomol. Sci. 33:212–220.

    Google Scholar 

Download references

Acknowledgements

Funding was provided by the New Zealand Ministry for Science and Innovation (CO6X0811 and C06X0601). We thank members of our advisory panel Dr. Chris Green (Dept. of Conservation), Mr. M. Harre (Ministry of Agriculture and Fisheries) and Dr. Nick Waipara (Auckland Regional Council) for support. Dr Alisdair Noble provided statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Maxwell Suckling.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. A

Experimental layout of glass (solid rectangle) and synthetic (Z)-9-hexadecenal trails, with actual ant trail (on Trail 1; no trail 2 present) overlaid, to show walking behavior (close up on left). Trail 1 was tested at two concentrations and Trail 2 was tested at six concentrations and an untreated control. (DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suckling, D.M., Stringer, L.D. & Corn, J.E. Argentine Ant Trail Pheromone Disruption is Mediated by Trail Concentration. J Chem Ecol 37, 1143–1149 (2011). https://doi.org/10.1007/s10886-011-0019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-0019-0

Key Words

Navigation