Journal of Chemical Ecology

, Volume 37, Issue 1, pp 10–17 | Cite as

Ontogeny of Tetrodotoxin Levels in Blue-ringed Octopuses: Maternal Investment and Apparent Independent Production in Offspring of Hapalochlaena lunulata

  • Becky L. Williams
  • Charles T. Hanifin
  • Edmund D. BrodieJr.
  • Roy L. Caldwell
Article

Abstract

Many organisms provision offspring with antipredator chemicals. Adult blue-ringed octopuses (Hapalochlaena spp.) harbor tetrodotoxin (TTX), which may be produced by symbiotic bacteria. Regardless of the ultimate source, we find that females invest TTX into offspring and offspring TTX levels are significantly correlated with female TTX levels. Because diversion of TTX to offspring begins during the earliest stages of egg formation, when females are still actively foraging and looking for mates, females may face an evolutionary tradeoff between provisioning larger stores of TTX in eggs and retaining that TTX for their own defense and offense (venom). Given that total TTX levels appear to increase during development and that female TTX levels correlate with those of offspring, investment may be an active adaptive process. Even after eggs have been laid, TTX levels continue to increase, suggesting that offspring or their symbionts begin producing TTX independently. The maternal investment of TTX in offspring of Hapalochlaena spp. represents a rare examination of chemical defenses, excepting ink, in cephalopods.

Key Words

Tetrodotoxin Blue-ringed octopus Hapalochlaena lunulata Hapalochlaena fasciata Maternal investment Egg Paralarva Ontogeny 

References

  1. Akizawa, T., Mukai, T., Matsukawa, M., Yoshioka, M., Morris, J. F., and Butler, V. P., Jr. 1994. Structures of novel bufadienolides in the eggs of a toad, Bufo marinus. Chem. Pharm. Bull. 42:754–756.PubMedGoogle Scholar
  2. Benard, M. F., and Fordyce, J. A. 2003. Are induced defenses costly? Consequences of predator-induced defenses in western toads, Bufo boreas. Ecology 84:68–78.CrossRefGoogle Scholar
  3. Bezzerides, A., Yong, T., Bezzerides, J., Husseini, J., Ladau, J., Eisner, M., and Eisner, T. 2004. Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae). Proc. Nat. Acad. Sci.USA 101:9029–9032.CrossRefPubMedGoogle Scholar
  4. Biggs, J., and Epel, D. 1991. Egg capsule sheath of Loligo opalescens Berry: structure and association with bacteria. J. Exp. Zool. 259:263–267.CrossRefGoogle Scholar
  5. Boyle, P. R., and Chevis, D. 1992. Egg development in the octopus Eledone cirrhosa. J. Zool., London 227:623–638.CrossRefGoogle Scholar
  6. Cameron, D. D., Johnson, I., Read, D. J., and Leake, J. R. 2008. Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytologist 180:176–184.CrossRefPubMedGoogle Scholar
  7. Cheng, M. W., and Caldwell, R. L. 2000. Sex identification and mating in the blue-ringed octopus, Hapalochlaena lunulata. Anim. Behav. 60:27–33.CrossRefPubMedGoogle Scholar
  8. Derby, C.D., 2007. Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol. Bull. 213:274–289.CrossRefPubMedGoogle Scholar
  9. Eisner, T., and Meinwald, J. 1995. The chemistry of sexual selection. Proc. Nat. Acad. Sci. USA 92:50–55.CrossRefPubMedGoogle Scholar
  10. Eisner, T., Eisner, M., Rossini, C., Iyengar, V. K., Roach, B. L., Benedikt, E., and Meinwald, J. 2000. Chemical defense against predation in an insect egg. Proc. Nat. Acad. Sci.USA 15:1634–1639.CrossRefGoogle Scholar
  11. Emelianoff, V., Chapuis, E., Le Brun, N., Chiral, M., Moulia, C., and Ferdy, J. 2008. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Evolution 62:932–942.CrossRefPubMedGoogle Scholar
  12. Froesch, D., and Marthy, H. J. 1975. The structure and function of the oviducal gland in Octopods (Cephalopoda). Proc. Royal Soc.London. Series B, Biol. Sci. 188:95–101.CrossRefGoogle Scholar
  13. Fuhrman, F. A., Fuhrman, G. J., Dull, D. L., and Mosher, H. S. 1969. Toxins from eggs of fishes and Amphibia. J. Agr. Food Chem. 17:417–424.CrossRefGoogle Scholar
  14. Furusaki, A., Tomie, Y., and Nitta, I. 1970. The crystal and molecular structure of bromoanhydrotetrodoic lactone hydrobromide. Bull. Chem. Soc. Jpn. 43:3325–3331.CrossRefGoogle Scholar
  15. Gladstone, W. 1987. The eggs and larvae of the Sharpnose Pufferfish Canthigaster valentini (Pices: Tetradontidae) are unpalatable to other reef fishes. Copeia 1987:227–230.CrossRefGoogle Scholar
  16. Goto, T., Kishi, Y., Takahashi, S., and Hirata, Y. 1965. Tetrodotoxin. XI. Tetrahedron 21:2059–2088.CrossRefPubMedGoogle Scholar
  17. Häikiö, E., Makkonen, M., Julkunen-Tiitto, R., Sitte, J., Freiwald, V., Silfver, T., Pandey, V., Beuker, E., Holopainen, T., and Oksanen, E. 2009. Performance and secondary chemistry of two hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones in long-term elevated ozone exposure. J. Chem. Ecol. 35:664–678.CrossRefPubMedGoogle Scholar
  18. Hanifin, C. T., Yotsu-Yamashita, M., Yasumoto, T., Brodie, E. D. III, and Brodie, E.D., Jr. 1999. Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. J. Chem. Ecol. 25:2161–2175.CrossRefGoogle Scholar
  19. Hanifin, C. T., Brodie, E. D. III, and Brodie, E. D. Jr. 2003. Tetrodotoxin levels in the eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. J. Chem. Ecol. 29:1729–1739.CrossRefPubMedGoogle Scholar
  20. Hanlon, R. T., and Messenger, J. B. 1996. Cephabopods Behaviour. Cambridge University Press, Cambridge.Google Scholar
  21. Hutchinson, D. A., Savitzky, A. H., Mori, A., Meinwald, J., and Schoeder, F. C. 2008. Maternal provisioning of sequestered defensive steroids by the Asian snake Rhabdophis tigrinus. Chemoecology 18:181–190.CrossRefGoogle Scholar
  22. Hwang, D. F., Arakawa, O., Saito, T., Noguchi, T., Simidu, U., Tsukamoto, K., Shida, Y., and Hashimoto, K. 1989. Tetrodotoxin-producing bacteria from the blue-ringed octopus, Octopus maculosus. Mar. Biol. 100:327–332.CrossRefGoogle Scholar
  23. Janzen, D. H. 1978. The ecology and evolutionary biology of seed chemistry as related to seed predation, pp. 162–206, in: J. B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, New York.Google Scholar
  24. Jones, E. C. 1963. Tremoctopus violaceus uses Physalia tentacles as weapons. Science 139:764–766.CrossRefPubMedGoogle Scholar
  25. Kao, C. Y. 1966. Tetrodotoxin, saxitoxin, and their significance in the study of excitation phenomena. Pharmacol. Rev. 18:997–1049.PubMedGoogle Scholar
  26. Kaufman, M. R., Ikeda, Y., Patton, C., Van Dykhuizen, G., and Epel, G. 1998. Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Bio. Bull. 194:36–43.CrossRefGoogle Scholar
  27. Kawasaki, H., Nagata, T., and Kanoh, S. 1973. An experience on the biological assay of the toxicity of imported Fugu (Tetrodon). Shokuhin Eiseigaku Zasshi 14:186–190.Google Scholar
  28. Kono, M., Matsui, T., Furukawa, K., Yotsu-Yamashita, M., and Yamamori, K. 2008. Accumulation of tetrodotoxin and 4,9-anhydrotetorodotoxin in cultured juvenile kusafugu Fugu niphobles by dietary administration of natural toxic komonfugu Fugu poecilonotus liver. Toxicon 51:1269–1273.CrossRefPubMedGoogle Scholar
  29. Lindquist, N., and Hay, M. E. 1996. Palatability and chemical defense of marine invertebrate larvae. Ecol. Monogr. 66:431–450.CrossRefGoogle Scholar
  30. Lindquist, N., Hay, M. E., and Fenical, W. 1992. Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecol. Monogr. 62:547–568.CrossRefGoogle Scholar
  31. Martins, C.A., Alvito, P., Tavares, M.J., Pereira, P., Doucette, G., Franca, S. 2003. Reevaluation of production of paralytic shellfish toxin by bacteria associated with dinoflagellates of the Portuguese coast. Appl. Environ. Microbiol. 69:5693. CrossRefPubMedGoogle Scholar
  32. Matsui, T., Sato, H., Hamada, S., Shimizu, C. 1982. Comparison of toxicity of the cultured and wild puffer fish Fugu niphobles. Bull. Jpn. Soc. Sci. Fish. 48:253. Google Scholar
  33. Matsumura, K. 1995. Re-examination of tetrodotoxin production by bacteria. App. Environ. Microbiol. 61:3468–3470. Google Scholar
  34. Matsumura, K. 1996. Tetrodotoxin concentration in cultured puffer fish, Fugu rubripes. J. Agric. Food Chem. 44:1–2. CrossRefGoogle Scholar
  35. Matsumura, K. 1998. Production of tetrodotoxin in puffer fish embryos. Env. Tox. Pharm. 6:217–219. CrossRefGoogle Scholar
  36. Matsumura, K. 2001. No ability to produce tetrodotoxin in bacteria. Appl. Environ. Microbiol. 67:2393–2394. CrossRefPubMedGoogle Scholar
  37. McMichael, D. F. 1964. Identity of venomous octopus responsible for a fatal bite at Darwin, Northern Territory. J. Malacol. Soc. Aust. 1:23–24.Google Scholar
  38. Mosher, H. S. 1986. The chemistry of tetrodotoxin. Ann. NY Acad. Sci. 479:32–43. CrossRefPubMedGoogle Scholar
  39. Mosher, H. S., Fuhrman, F. A., Buchwald, H. D., and Fischer, H. G. 1964. Tarichatoxin -tetrodotoxin: A potent neurotoxin. Science 144:1100–1110.CrossRefPubMedGoogle Scholar
  40. Ohyabu, N., Nishikawa, T., and Isobe, M. 2003. First asymmetric total synthesis of tetrodotoxin. J. Am. Chem. Soc. 125:8798–8805.CrossRefPubMedGoogle Scholar
  41. Orians, G. H., and Janzen, D. H. 1974. Why are embryos so tasty? Am. Nat. 108:581–591.CrossRefGoogle Scholar
  42. Overath, H., and von Boletzky, S. 1974. Laboratory observations on spawning and embryonic development of a blue-ringed octopus. Mar. Biol. 27:333–337.CrossRefGoogle Scholar
  43. Pawlik, J. R., Kernan, M. R., Molinski, T. F., Harper, M. K., and Faulkner, D. J. 1988. Defensive chemicals of the Spanisch dancer nudibranch Hexabranchus sanguineus and its egg ribbons: macrolides derived from a sponge diet. J. Exp. Mar. Biol. Ecol. 119:99–109.CrossRefGoogle Scholar
  44. Piel, J. 2004. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 21:519–538.CrossRefPubMedGoogle Scholar
  45. Robertson, A., Stirling, D., Robillot, C., Llewellyn, L., Negri, A. 2004. First report of saxiton in octopi. Toxicon 44:765–771. CrossRefPubMedGoogle Scholar
  46. Schroeder, F. C., Gonzalez, A., Eisner, T., and Meinwald, J. 1999. Miriamin, a defensive diterpene from the eggs of a land slug (Arion sp.). Proc. Nat. Acad. Sci. USA 96:13620–13625.CrossRefPubMedGoogle Scholar
  47. Sheumack, D. D., Howden, M. E. H., and Spence, I. 1978. Maculotoxin: a neurotoxin from the glands of the octopus, Hapalochlaena maculosa identified as tetrodotoxin. Science 199:188–189.CrossRefPubMedGoogle Scholar
  48. Sheumack, D. D., Howden, M. E., and Spence, I. 1984. Occurrence of a tetrodotoxin-like compound in the eggs of the venomous blue-ringed octopus (Hapalochlaena maculosa). Toxicon 22:811–812.CrossRefPubMedGoogle Scholar
  49. Shimizu, Y., and Kobayashi, M. 1983. Apparent lack of tetrodotoxin biosynthesis in captured Taricha torosa and Taricha granulosa. Chem. Pharm. Bull. 10:3625–3631.Google Scholar
  50. Tarjuelo, I., López-Legentil, S., Codina, M., and Turon, X. 2002. Defence mechanisms of adults and larvae of colonial ascidians: patterns of palatability and toxicity. Mar. Ecol. Prog. Ser. 235:103–115.CrossRefGoogle Scholar
  51. Toledo, R. C., and Jared, C. 1995. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. 111A:1–29.CrossRefGoogle Scholar
  52. Tranter, D. J., and Augustine, O. 1973. Observations on the life history of the blue-ringed octopus Hapalochlaena maculosa. Mar. Biol. (Berl.) 18:115–128.CrossRefGoogle Scholar
  53. Tsuda, K., Ikuma, S., Kawamura, M., Tachikawa, R., Sakai, K., Tamura, C., and Amakasu, O. 1964. On the structure of tetrodotoxin and its derivatives. Chem. Pharm. Bull. 12:1357–1374.PubMedGoogle Scholar
  54. von Boletzky, S. 1989. Recent studies on spawning, embryonic development, and hatching in the Cephalopoda. Adv. Mar. Biol. 25:85–115.CrossRefGoogle Scholar
  55. von Boletzky, S. 2003. Biology of early life stages in cephalopod molluscs Adv. Mar. Biol. 44:143–203.CrossRefGoogle Scholar
  56. Williams, B. L., and Caldwell, R. L. 2009. Intra–organismal distribution of tetrodotoxin in two species of blue–ringed octopuses (Hapalochlaena fasciata and H. lunulata). Toxicon 54:345–353.CrossRefPubMedGoogle Scholar
  57. Williams, B. L., Hanifin, C. T., Brodie, E. D., Jr., and E. D. Brodie, III. 2010. Tetrodotoxin (TTX) affects survival probability of rough skinned newts (Taricha granulosa) faced with TTX-resistant garter snake predators (Thamnophis sirtalis). Chemoecology 20:285–290.CrossRefGoogle Scholar
  58. Woodward, R. B., 1964. The structure of tetrodotoxin. Pure. Appl. Chem. 9:49–74.CrossRefGoogle Scholar
  59. Yotsu, M., Endo, A., and Yasumoto, T. 1989. An improved tetrodotoxin analyzer. Agric. Biol. Chem. 53:893–895.Google Scholar
  60. Yotsu-Yamashita, M., Mebs, D., and Flachsenberger, W. 2007. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon 49:410–412.CrossRefPubMedGoogle Scholar
  61. Zangerl, A. R., and Berenbaum, M. R. 1997. Cost of chemically defending seeds: furanocourmarins and Pastinaca sativa. Am. Nat. 150:491–504.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Becky L. Williams
    • 1
  • Charles T. Hanifin
    • 2
  • Edmund D. BrodieJr.
    • 3
  • Roy L. Caldwell
    • 4
  1. 1.Department of BiologyNew Mexico State UniversityLas CrucesUSA
  2. 2.Hopkins Marine StationStanford UniversityPacific GroveUSA
  3. 3.Department of BiologyUtah State UniversityLoganUSA
  4. 4.Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations