Skip to main content
Log in

Effect of Chirality, Release Rate, and Host Volatiles on Response of Tetropium fuscum (F.), Tetropium cinnamopterum Kirby, and Tetropium castaneum (L.) to the Aggregation Pheromone, Fuscumol

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The male-produced aggregation pheromones of Tetropium fuscum (F.) and T. cinnamopterum Kirby were identified as (2S,5E)-6,10-dimethyl-5,9-undecadienol by chemical analysis, synthesis, electronantennography, and field trapping; the compound is here renamed “fuscumol”. The effect of fuscumol chirality, alone or with host volatiles, and fuscumol release rate on Tetropium spp. was tested in field-trapping experiments in Nova Scotia and Poland. Both (S)-fuscumol and racemic fuscumol synergized trap catches of male and female T. fuscum, T. cinnamopterum, and T. castaneum (L.) when combined with a blend of host monoterpenes and ethanol. Without added host volatiles, fuscumol was either unattractive (in Nova Scotia) or only slightly so (in Poland). (R)-Fuscumol, alone or in combination with host volatiles, did not elicit increases in trap capture of any Tetropium species, relative to the controls. Fuscumol synergized attraction of both sexes to host volatiles, thus indicating it acts as an aggregation pheromone. Sex ratio was often female-biased in traps baited with fuscumol plus host volatiles, and was either unbiased or male-biased in traps with host volatiles alone. In traps with host volatiles and racemic fuscumol, mean catches of Tetropium species were unaffected by fuscumol release rates ranging from 1 to 32 mg/d. The attraction of three different Tetropium species to the combination of (S)-fuscumol and host volatiles suggests that cross-attraction may occur where these species are sympatric, and that reproductive isolation possibly occurs via differences in close-range cues. These results have practical applications for survey and monitoring of T. fuscum, a European species established in Nova Scotia since at least 1980, and for early detection of T. castaneum, a European species not presently established in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison, J. D., Borden, J. H., and Seybold, S. J. 2004. A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150.

    Article  CAS  Google Scholar 

  • Borden, J. H. 1974. Aggregation pheromones in the Scolytidae. pp. 135–60 in M. C. Birch (ed.). Pheromones. North Holland Pub. Co, Amsterdam.

    Google Scholar 

  • Cunningham, G. 2010. Update on the Brown Spruce Longhorn Beetle (BSLB), Tetropium fuscum (Fabricius), in Nova Scotia, Canada. North American Plant Protection Organization Phytosanitary Alert System Official Pest Report. http://www.pestalert.org/oprDetail.cfm?oprID=413 (accessed 23 April 2010).

  • Fonseca, M. G., Vidal, D. M., and Zarbin, P. H. G. 2010. Male-produced sex pheromone of the Cerambycid beetle Hedypathes betulinus: Chemical identification and biological activity. J. Chem. Ecol. doi:10.1007/s10886-010-9850-y

    PubMed  Google Scholar 

  • Furniss, R. L., and Carolin, V. M. 1980. Western Forest Insects. U.S. Dept. Agriculture Forest Service Miscellaneous Publication No. 1339, 654 p.

  • Ginzel, M. D., and Hanks, L. M. 2003. Contact pheromones as mate recognition cues of four species of longhorned beetles (Coleoptera: Cerambycidae). J. Insect Behav. 16:181–187.

    Article  Google Scholar 

  • Gries, R., Khaskin, G., Daroogheh, H., Mart, C., Karadag, S., Kubilayer, M., Britton, R., and Gries, G. 2006. (2S,12Z)-2-Acetoxy-12-heptadecene: major sex pheromone component of pistachio twig borer, Kermania pistaciella. J. Chem. Ecol. 32:2667–2677.

    Article  CAS  PubMed  Google Scholar 

  • Hanks, L. M., Millar, J. G., Moreira, J. A., Barbour, J. D., Lacey, E. S., Mc Elfresh, J. S., Reuter, F. R., and Ray, A. M. 2007. Using generic pheromone lures to expedite identification of aggregation pheromones for the cerambycid beetles Xylotrechus nauticus, Phymatodes lecontii, and Neoclytus modestus modestus. J. Chem. Ecol. 33:889–907.

    Article  CAS  PubMed  Google Scholar 

  • Hick, A. J., Luszniak, M. C., and Pickett, J. A. 1999. Volatile isoprenoids that control insect behavior and development. Nat. Prod. Rep. 16:39–54.

    Article  CAS  Google Scholar 

  • Jacobs, K., Seifert, K. A., Harrison, K. J., and Kirisits, T. 2003. Identity and phylogenetic relationships of ophiostomatoid fungi associated with invasive and native Tetropium species (Coleoptera: Cerambycidae) in Atlantic Canada. Can J. Bot. 81:316–329.

    Article  Google Scholar 

  • Juutinen, P. 1955. Zur Biologie und forstlichen Bedeutung der Fichtenböcke (Tetropium Kirby) in Finland. Acta Entomol. Fenn. 11:1–112.

    Google Scholar 

  • Kosugi, H., Yamabe, O., and Kato, M. 1998. Synthetic study of marine lobane diterpenes: efficient synthesis of (1)-fuscol. J. Chem. Soc., Perkin Trans. 1:217–221.

    Article  Google Scholar 

  • Lacey, E. S., Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2004. Male-produced aggregation pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. J. Chem. Ecol. 30:1493–1507.

    Article  CAS  PubMed  Google Scholar 

  • Lacey, E. S., Moreira, J. A., Millar, J. G., Ray, A. M., and Hanks, L. M. 2007. Male-produced aggregation pheromone of the cerambycid beetle Neoclytus mucronatus mucronatus. Entomol. Exp. Appl. 122:171–179.

    Article  CAS  Google Scholar 

  • Lacey, E. S., Moreira, J. A., Millar, J. G., and Hanks, L. M. 2008. A male-produced aggregation pheromone blend consisting of alkanediols, terpenoids, and an aromatic alcohol from the Cerambycid beetle Megacyllene caryae. J. Chem. Ecol. 34:408–417.

    Article  CAS  PubMed  Google Scholar 

  • Landolt, P. J., and Phillips, T. W. 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Annu. Rev. Entomol. 42:371–91.

    Article  CAS  PubMed  Google Scholar 

  • Lemay, M. A., Silk, P. J., and Sweeney, J. D. 2010. Calling behaviour of Tetropium fuscum (Coleoptera: Cerambycidae: Spondylidinae). Can. Entomol. 141:256-260.

    Google Scholar 

  • Linsley, E. G. 1961. The Cerambycidae of North America, Part I. Introduction. Univ. Calif. Publ. Entomol. 18:1–135.

    Google Scholar 

  • Madyastha, K. M., and Gururaja, T. L. 1994. Asymmetric reduction of prochiral ketones by cell-free systems from Alcaligenes eutrophus. J. Chem. Tech. Biotechnol. 59:249–255.

    Article  CAS  Google Scholar 

  • Miller, D. R., Borden, J. H., and Lindgren, B. S. 2005. Dose-dependent pheromone responses of Ips pini, Orthotomicus latidens (Coleoptera: Scolytidae), and associates in stands of lodgepole pine. Environ. Entomol. 34:591–597.

    Article  Google Scholar 

  • Mori, K. 1975. Synthesis of optically active forms of sulcatol. Tetrahedron 31:3011–3012.

    Article  CAS  Google Scholar 

  • Mori, K. 2007. Significance of chirality in pheromone science. Bioorg. Medic. Chem. 15:7505–7523.

    Article  CAS  PubMed  Google Scholar 

  • Nehme, M.E., Keena, M. A., Zhang, A., Baker, T. C., and Hoover, K. 2009. Attraction of Anoplophora glabripennis to male-produced pheromone and plant volatiles. Environ. Entomol. 38:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Oritami, T. and Yamashita, K. 1973. Microbial resolution of (±)-acyclic alcohols. Agr. Biol. Chem. 37:1923–1928.

    Google Scholar 

  • Pajares, J. A., Álvarez, G., Ibeas, F., Gallego, D., Hall, D. R., and Farman, D. I. 2010. Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. J. Chem. Ecol. published online 02 May 2010. doi:10.1007/s10886-010-9791-5.

  • Raffa, K. F., Phillips, T. W., and Salom, S. M. 1993. Strategies and mechanisms of host colonization by bark beetles, pp. 103–128, in T. D. Schowalter and G. M. Filip (eds.). Beetle-Pathogen Interactions in Conifer Forests. Academic Press, London.

    Google Scholar 

  • Ray, A. M., Millar, J. G., Mcelfresh, J. S., Swift, I. P., Barbour, J.D., and Hanks, L. M. 2009. Male-produced aggregation pheromone of the cerambycid beetle Rosalia funebris. J. Chem. Ecol. 35:96–103.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G. V. P., Fettköther, R., Noldt, U., and Dettner, K. 2005a. Capture of female Hylotrupes bajulus as influenced by trap type and pheromone blend. J. Chem. Ecol. 31:2169–2177.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G. V. P., Fettköther, R., Noldt, U., and Dettner, K. 2005b. Enhancement of attraction and trap catches of the old-house borer, Hylotrupes bajulus (Coleoptera: Cerambycidae), by combination of male sex pheromone and monoterpenes. Pest Manage. Sci. 61:699–704.

    Article  CAS  Google Scholar 

  • Rodstein, J., Mcelfresh, J. S., Barbour, J. D., Ray, A. M., Hanks, L.M., and Millar, J. G. 2009. Identification and synthesis of a female-produced sex pheromone for the Cerambycid beetle Prionus californicus. J. Chem. Ecol. 35:590–600.

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe, A. M. and Burkhardt, E. R. 1997. Highly enantioselective reduction of prochiral ketones with N,N-diethylaniline-borane (DEANB) in oxazaborolidine-catalysed reductions. Tetrahed. Lett. 38:1523–1526.

    Article  CAS  Google Scholar 

  • Sas Institute. 2002–2003. Proprietary Software release 9.1 SAS Institute Inc., Cary, NC, USA.

  • Schimitschek, E. 1929. Tetropium gabrieli Weise und Tetropium fuscum F. Ein beitrag zu ihrer Lebensgeneinsamschaft. Zeits. angew. Entomol. 15:229–334.

    Article  Google Scholar 

  • Silk, P. J., Sweeney, J. D., Wu, J., Price, J., Gutowski, J. M., and Kettela, E. G. 2007. Evidence for a male-produced pheromone in Tetropium fuscum (F.) and Tetropium cinnamopterum (Kirby) (Coleoptera: Cerambycidae). Naturwissenschaften 94:697–701.

    Article  CAS  PubMed  Google Scholar 

  • Silk, P. J., Lemay, M. A., Leclair, G., Sweeney, J. D., and Magee, D. 2010 Behavioral and electrophysiological responses of Tetropium fuscum (Coleoptera: Cerambycidae) to spruce volatiles. Environ. Entomol. [in press].

  • Slessor, K. N., King, G. G. S., Miller, D. R., Winston, M. L., and Cutforth, T. L. 1985. Determination of chirality of alcohol or latent alcohol semiochemicals in individual insects. J. Chem. Ecol. 11:371–374.

    Article  Google Scholar 

  • Smith, G., and Humble, L. M. 2000. The brown spruce longhorn beetle. Exotic Forest Pest Advisory 5. Natural Resources Canada, Canadian Forest Service. 4 p.

  • Smith, G., and Hurley, J. E. 2000. First North American record of the Palearctic species Tetropium fuscum (Fabricius) (Coleoptera: Cerambycidae). Coleopt. Bull. 54:540.

    Article  Google Scholar 

  • Sweeney, J. D., de Groot, P., Macdonald, L., Smith, S., Cocquempot, C., Kenis, M., and Gutowski, J. M. 2004. Host volatile attractants for detection of Tetropium fuscum (F.), Tetropium castaneum (L.), and other longhorned beetles (Coleoptera: Cerambycidae). Environ. Entomol. 33:844–854.

    Article  CAS  Google Scholar 

  • Sweeney, J. D., Gutowski, J. M., Price, J., and de Groot, P. 2006. Effect of semiochemical release rate, killing agent, and trap design on detection of Tetropium fuscum (F.) and other longhorn beetles (Coleoptera: Cerambycidae). Environ. Entomol. 35:645–654.

    Article  Google Scholar 

  • Symonds, M. R. E., and Elgar, M. A. 2007. The evolution of pheromone diversity. Trends Ecol. Evol. 23:220–228.

    Article  Google Scholar 

  • Wertheim, B., Van Baalen, E. A., Dicke, M., and Vet, L. E. M. 2005. Pheromone-mediated aggregation in nonsocial arthropods: An evolutionary perspective. Annu. Rev. Entomol. 50:321–346

    Article  CAS  PubMed  Google Scholar 

  • Zar, J.H. 1999. Biostatistical Analysis. 4th edn. p. 663. Prentice-Hall, Inc., Upper Saddle River, New Jersey.

    Google Scholar 

  • Zhang, A., Oliver, J.E., Aldrich, J.R., Wang, B., and Mastro, V.C. 2002. Stimulatory beetle volatiles for the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). Zeitschrift Naturforschung J. Biosci. 57:553–558.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Canadian Food Inspection Agency, Natural Resources Canada—Canadian Forest Service (Forest Invasive Alien Species Fund), and (through the auspices of Spray Efficacy Research Group International) Forest Protection Limited (NB), Ontario Ministry of Natural Resources, and the Nova Scotia Ministry of Natural Resources for generous funding and in-kind support. We thank M. Rhainds, D. Pureswaran, G. LeClair, C. Simpson and two anonymous reviewers for helpful comments on an earlier version of this manuscript, H. Mills for help with synthetic chemistry, M. Lavigne for help with graphics, J. Price, N. Brawn, K. Burgess, A. Doane, B. Guscott, N. Harn, S. Laity, W. MacKay, K. O’Leary, A. Papageorgiou, S. Richards, A. Sharpe, D. Seaboyer, K. Sućko, and T. Walsh for technical assistance, L. Hanks, E. Lacey, J. Millar, and A. Ray for advice, and N. Carter, D. Davies, E. Hurley, and T. Scarr for support. All experiments reported here comply with the laws of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon D. Sweeney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweeney, J.D., Silk, P.J., Gutowski, J.M. et al. Effect of Chirality, Release Rate, and Host Volatiles on Response of Tetropium fuscum (F.), Tetropium cinnamopterum Kirby, and Tetropium castaneum (L.) to the Aggregation Pheromone, Fuscumol. J Chem Ecol 36, 1309–1321 (2010). https://doi.org/10.1007/s10886-010-9876-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9876-1

Key Words

Navigation