Advertisement

Journal of Chemical Ecology

, Volume 36, Issue 12, pp 1309–1321 | Cite as

Effect of Chirality, Release Rate, and Host Volatiles on Response of Tetropium fuscum (F.), Tetropium cinnamopterum Kirby, and Tetropium castaneum (L.) to the Aggregation Pheromone, Fuscumol

  • Jon D. Sweeney
  • Peter J. Silk
  • Jerzy M. Gutowski
  • Junping Wu
  • Matthew A. Lemay
  • Peter D. Mayo
  • David I. Magee
Article

Abstract

The male-produced aggregation pheromones of Tetropium fuscum (F.) and T. cinnamopterum Kirby were identified as (2S,5E)-6,10-dimethyl-5,9-undecadienol by chemical analysis, synthesis, electronantennography, and field trapping; the compound is here renamed “fuscumol”. The effect of fuscumol chirality, alone or with host volatiles, and fuscumol release rate on Tetropium spp. was tested in field-trapping experiments in Nova Scotia and Poland. Both (S)-fuscumol and racemic fuscumol synergized trap catches of male and female T. fuscum, T. cinnamopterum, and T. castaneum (L.) when combined with a blend of host monoterpenes and ethanol. Without added host volatiles, fuscumol was either unattractive (in Nova Scotia) or only slightly so (in Poland). (R)-Fuscumol, alone or in combination with host volatiles, did not elicit increases in trap capture of any Tetropium species, relative to the controls. Fuscumol synergized attraction of both sexes to host volatiles, thus indicating it acts as an aggregation pheromone. Sex ratio was often female-biased in traps baited with fuscumol plus host volatiles, and was either unbiased or male-biased in traps with host volatiles alone. In traps with host volatiles and racemic fuscumol, mean catches of Tetropium species were unaffected by fuscumol release rates ranging from 1 to 32 mg/d. The attraction of three different Tetropium species to the combination of (S)-fuscumol and host volatiles suggests that cross-attraction may occur where these species are sympatric, and that reproductive isolation possibly occurs via differences in close-range cues. These results have practical applications for survey and monitoring of T. fuscum, a European species established in Nova Scotia since at least 1980, and for early detection of T. castaneum, a European species not presently established in North America.

Key Words

Tetropium fuscum Tetropium castaneum Tetropium cinnamopterum Pheromone Chirality Release rate Aggregation Coleoptera Cerambycidae Spondylidinae (S)-Fuscumol Cross-attraction 

Notes

Acknowledgements

We thank the Canadian Food Inspection Agency, Natural Resources Canada—Canadian Forest Service (Forest Invasive Alien Species Fund), and (through the auspices of Spray Efficacy Research Group International) Forest Protection Limited (NB), Ontario Ministry of Natural Resources, and the Nova Scotia Ministry of Natural Resources for generous funding and in-kind support. We thank M. Rhainds, D. Pureswaran, G. LeClair, C. Simpson and two anonymous reviewers for helpful comments on an earlier version of this manuscript, H. Mills for help with synthetic chemistry, M. Lavigne for help with graphics, J. Price, N. Brawn, K. Burgess, A. Doane, B. Guscott, N. Harn, S. Laity, W. MacKay, K. O’Leary, A. Papageorgiou, S. Richards, A. Sharpe, D. Seaboyer, K. Sućko, and T. Walsh for technical assistance, L. Hanks, E. Lacey, J. Millar, and A. Ray for advice, and N. Carter, D. Davies, E. Hurley, and T. Scarr for support. All experiments reported here comply with the laws of Canada.

References

  1. Allison, J. D., Borden, J. H., and Seybold, S. J. 2004. A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150.CrossRefGoogle Scholar
  2. Borden, J. H. 1974. Aggregation pheromones in the Scolytidae. pp. 135–60 in M. C. Birch (ed.). Pheromones. North Holland Pub. Co, Amsterdam.Google Scholar
  3. Cunningham, G. 2010. Update on the Brown Spruce Longhorn Beetle (BSLB), Tetropium fuscum (Fabricius), in Nova Scotia, Canada. North American Plant Protection Organization Phytosanitary Alert System Official Pest Report. http://www.pestalert.org/oprDetail.cfm?oprID=413 (accessed 23 April 2010).
  4. Fonseca, M. G., Vidal, D. M., and Zarbin, P. H. G. 2010. Male-produced sex pheromone of the Cerambycid beetle Hedypathes betulinus: Chemical identification and biological activity. J. Chem. Ecol. doi: 10.1007/s10886-010-9850-y PubMedGoogle Scholar
  5. Furniss, R. L., and Carolin, V. M. 1980. Western Forest Insects. U.S. Dept. Agriculture Forest Service Miscellaneous Publication No. 1339, 654 p.Google Scholar
  6. Ginzel, M. D., and Hanks, L. M. 2003. Contact pheromones as mate recognition cues of four species of longhorned beetles (Coleoptera: Cerambycidae). J. Insect Behav. 16:181–187.CrossRefGoogle Scholar
  7. Gries, R., Khaskin, G., Daroogheh, H., Mart, C., Karadag, S., Kubilayer, M., Britton, R., and Gries, G. 2006. (2S,12Z)-2-Acetoxy-12-heptadecene: major sex pheromone component of pistachio twig borer, Kermania pistaciella. J. Chem. Ecol. 32:2667–2677.CrossRefPubMedGoogle Scholar
  8. Hanks, L. M., Millar, J. G., Moreira, J. A., Barbour, J. D., Lacey, E. S., Mc Elfresh, J. S., Reuter, F. R., and Ray, A. M. 2007. Using generic pheromone lures to expedite identification of aggregation pheromones for the cerambycid beetles Xylotrechus nauticus, Phymatodes lecontii, and Neoclytus modestus modestus. J. Chem. Ecol. 33:889–907.CrossRefPubMedGoogle Scholar
  9. Hick, A. J., Luszniak, M. C., and Pickett, J. A. 1999. Volatile isoprenoids that control insect behavior and development. Nat. Prod. Rep. 16:39–54.CrossRefGoogle Scholar
  10. Jacobs, K., Seifert, K. A., Harrison, K. J., and Kirisits, T. 2003. Identity and phylogenetic relationships of ophiostomatoid fungi associated with invasive and native Tetropium species (Coleoptera: Cerambycidae) in Atlantic Canada. Can J. Bot. 81:316–329.CrossRefGoogle Scholar
  11. Juutinen, P. 1955. Zur Biologie und forstlichen Bedeutung der Fichtenböcke (Tetropium Kirby) in Finland. Acta Entomol. Fenn. 11:1–112.Google Scholar
  12. Kosugi, H., Yamabe, O., and Kato, M. 1998. Synthetic study of marine lobane diterpenes: efficient synthesis of (1)-fuscol. J. Chem. Soc., Perkin Trans. 1:217–221.CrossRefGoogle Scholar
  13. Lacey, E. S., Ginzel, M. D., Millar, J. G., and Hanks, L. M. 2004. Male-produced aggregation pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. J. Chem. Ecol. 30:1493–1507.CrossRefPubMedGoogle Scholar
  14. Lacey, E. S., Moreira, J. A., Millar, J. G., Ray, A. M., and Hanks, L. M. 2007. Male-produced aggregation pheromone of the cerambycid beetle Neoclytus mucronatus mucronatus. Entomol. Exp. Appl. 122:171–179.CrossRefGoogle Scholar
  15. Lacey, E. S., Moreira, J. A., Millar, J. G., and Hanks, L. M. 2008. A male-produced aggregation pheromone blend consisting of alkanediols, terpenoids, and an aromatic alcohol from the Cerambycid beetle Megacyllene caryae. J. Chem. Ecol. 34:408–417.CrossRefPubMedGoogle Scholar
  16. Landolt, P. J., and Phillips, T. W. 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Annu. Rev. Entomol. 42:371–91.CrossRefPubMedGoogle Scholar
  17. Lemay, M. A., Silk, P. J., and Sweeney, J. D. 2010. Calling behaviour of Tetropium fuscum (Coleoptera: Cerambycidae: Spondylidinae). Can. Entomol. 141:256-260.Google Scholar
  18. Linsley, E. G. 1961. The Cerambycidae of North America, Part I. Introduction. Univ. Calif. Publ. Entomol. 18:1–135.Google Scholar
  19. Madyastha, K. M., and Gururaja, T. L. 1994. Asymmetric reduction of prochiral ketones by cell-free systems from Alcaligenes eutrophus. J. Chem. Tech. Biotechnol. 59:249–255.CrossRefGoogle Scholar
  20. Miller, D. R., Borden, J. H., and Lindgren, B. S. 2005. Dose-dependent pheromone responses of Ips pini, Orthotomicus latidens (Coleoptera: Scolytidae), and associates in stands of lodgepole pine. Environ. Entomol. 34:591–597.CrossRefGoogle Scholar
  21. Mori, K. 1975. Synthesis of optically active forms of sulcatol. Tetrahedron 31:3011–3012.CrossRefGoogle Scholar
  22. Mori, K. 2007. Significance of chirality in pheromone science. Bioorg. Medic. Chem. 15:7505–7523.CrossRefPubMedGoogle Scholar
  23. Nehme, M.E., Keena, M. A., Zhang, A., Baker, T. C., and Hoover, K. 2009. Attraction of Anoplophora glabripennis to male-produced pheromone and plant volatiles. Environ. Entomol. 38:1745–1755CrossRefPubMedGoogle Scholar
  24. Oritami, T. and Yamashita, K. 1973. Microbial resolution of (±)-acyclic alcohols. Agr. Biol. Chem. 37:1923–1928.Google Scholar
  25. Pajares, J. A., Álvarez, G., Ibeas, F., Gallego, D., Hall, D. R., and Farman, D. I. 2010. Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. J. Chem. Ecol. published online 02 May 2010. doi: 10.1007/s10886-010-9791-5.
  26. Raffa, K. F., Phillips, T. W., and Salom, S. M. 1993. Strategies and mechanisms of host colonization by bark beetles, pp. 103–128, in T. D. Schowalter and G. M. Filip (eds.). Beetle-Pathogen Interactions in Conifer Forests. Academic Press, London.Google Scholar
  27. Ray, A. M., Millar, J. G., Mcelfresh, J. S., Swift, I. P., Barbour, J.D., and Hanks, L. M. 2009. Male-produced aggregation pheromone of the cerambycid beetle Rosalia funebris. J. Chem. Ecol. 35:96–103.CrossRefPubMedGoogle Scholar
  28. Reddy, G. V. P., Fettköther, R., Noldt, U., and Dettner, K. 2005a. Capture of female Hylotrupes bajulus as influenced by trap type and pheromone blend. J. Chem. Ecol. 31:2169–2177.CrossRefPubMedGoogle Scholar
  29. Reddy, G. V. P., Fettköther, R., Noldt, U., and Dettner, K. 2005b. Enhancement of attraction and trap catches of the old-house borer, Hylotrupes bajulus (Coleoptera: Cerambycidae), by combination of male sex pheromone and monoterpenes. Pest Manage. Sci. 61:699–704.CrossRefGoogle Scholar
  30. Rodstein, J., Mcelfresh, J. S., Barbour, J. D., Ray, A. M., Hanks, L.M., and Millar, J. G. 2009. Identification and synthesis of a female-produced sex pheromone for the Cerambycid beetle Prionus californicus. J. Chem. Ecol. 35:590–600.CrossRefPubMedGoogle Scholar
  31. Salunkhe, A. M. and Burkhardt, E. R. 1997. Highly enantioselective reduction of prochiral ketones with N,N-diethylaniline-borane (DEANB) in oxazaborolidine-catalysed reductions. Tetrahed. Lett. 38:1523–1526.CrossRefGoogle Scholar
  32. Sas Institute. 2002–2003. Proprietary Software release 9.1 SAS Institute Inc., Cary, NC, USA.Google Scholar
  33. Schimitschek, E. 1929. Tetropium gabrieli Weise und Tetropium fuscum F. Ein beitrag zu ihrer Lebensgeneinsamschaft. Zeits. angew. Entomol. 15:229–334.CrossRefGoogle Scholar
  34. Silk, P. J., Sweeney, J. D., Wu, J., Price, J., Gutowski, J. M., and Kettela, E. G. 2007. Evidence for a male-produced pheromone in Tetropium fuscum (F.) and Tetropium cinnamopterum (Kirby) (Coleoptera: Cerambycidae). Naturwissenschaften 94:697–701.CrossRefPubMedGoogle Scholar
  35. Silk, P. J., Lemay, M. A., Leclair, G., Sweeney, J. D., and Magee, D. 2010 Behavioral and electrophysiological responses of Tetropium fuscum (Coleoptera: Cerambycidae) to spruce volatiles. Environ. Entomol. [in press].Google Scholar
  36. Slessor, K. N., King, G. G. S., Miller, D. R., Winston, M. L., and Cutforth, T. L. 1985. Determination of chirality of alcohol or latent alcohol semiochemicals in individual insects. J. Chem. Ecol. 11:371–374.CrossRefGoogle Scholar
  37. Smith, G., and Humble, L. M. 2000. The brown spruce longhorn beetle. Exotic Forest Pest Advisory 5. Natural Resources Canada, Canadian Forest Service. 4 p.Google Scholar
  38. Smith, G., and Hurley, J. E. 2000. First North American record of the Palearctic species Tetropium fuscum (Fabricius) (Coleoptera: Cerambycidae). Coleopt. Bull. 54:540.CrossRefGoogle Scholar
  39. Sweeney, J. D., de Groot, P., Macdonald, L., Smith, S., Cocquempot, C., Kenis, M., and Gutowski, J. M. 2004. Host volatile attractants for detection of Tetropium fuscum (F.), Tetropium castaneum (L.), and other longhorned beetles (Coleoptera: Cerambycidae). Environ. Entomol. 33:844–854.CrossRefGoogle Scholar
  40. Sweeney, J. D., Gutowski, J. M., Price, J., and de Groot, P. 2006. Effect of semiochemical release rate, killing agent, and trap design on detection of Tetropium fuscum (F.) and other longhorn beetles (Coleoptera: Cerambycidae). Environ. Entomol. 35:645–654.CrossRefGoogle Scholar
  41. Symonds, M. R. E., and Elgar, M. A. 2007. The evolution of pheromone diversity. Trends Ecol. Evol. 23:220–228.CrossRefGoogle Scholar
  42. Wertheim, B., Van Baalen, E. A., Dicke, M., and Vet, L. E. M. 2005. Pheromone-mediated aggregation in nonsocial arthropods: An evolutionary perspective. Annu. Rev. Entomol. 50:321–346CrossRefPubMedGoogle Scholar
  43. Zar, J.H. 1999. Biostatistical Analysis. 4th edn. p. 663. Prentice-Hall, Inc., Upper Saddle River, New Jersey.Google Scholar
  44. Zhang, A., Oliver, J.E., Aldrich, J.R., Wang, B., and Mastro, V.C. 2002. Stimulatory beetle volatiles for the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). Zeitschrift Naturforschung J. Biosci. 57:553–558.Google Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Jon D. Sweeney
    • 1
  • Peter J. Silk
    • 1
  • Jerzy M. Gutowski
    • 2
  • Junping Wu
    • 1
  • Matthew A. Lemay
    • 1
  • Peter D. Mayo
    • 1
  • David I. Magee
    • 3
  1. 1.Natural Resources Canada, Canadian Forest Service—Atlantic Forestry CentreFrederictonCanada
  2. 2.European Centre for Natural Forests, Forest Research InstituteBiałowieżaPoland
  3. 3.Department of ChemistryUniversity of New BrunswickFrederictonCanada

Personalised recommendations