Journal of Chemical Ecology

, Volume 36, Issue 12, pp 1293–1305 | Cite as

Binding of the General Odorant Binding Protein of Bombyx mori BmorGOBP2 to the Moth Sex Pheromone Components

  • Xiaoli He
  • George Tzotzos
  • Christine Woodcock
  • John A. Pickett
  • Tony Hooper
  • Linda M. Field
  • Jing-Jiang Zhou
Article

Abstract

Insects use olfactory cues to locate hosts and mates. Pheromones and other semiochemicals are transported in the insect antenna by odorant-binding proteins (OBPs), which ferry the signals across the sensillum lymph to the olfactory receptors (ORs). In the silkworm, Bombyx mori (L.), two OBP subfamilies, the pheromone-binding proteins (PBPs) and the general odorant-binding proteins (GOBPs), are thought to be involved in both sensing and transporting the sex pheromone, bombykol [(10E,12Z)-hexadecadien-1-ol], and host volatiles, respectively. Quantitative examination of transcript levels showed that BmorPBP1 and BmorGOBP2 are expressed specifically at very high levels in the antennae, consistent with their involvement in olfaction. A partitioning binding assay, along with other established assays, showed that both BmorPBP1 and BmorGOBP2 bind to the main sex pheromone component, bombykol. BmorPBP1 also binds equally well to the other major pheromone component, bombykal [(10E,12Z)-hexadecadienal], whereas BmorGOBP2 discriminates between the two ligands. The pheromone analogs (10E,12Z)-hexadecadienyl acetate and (10E,12Z)-octadecadien-1-ol bind to both OBPs more strongly than does bombykol, suggesting that they could act as potential blockers of the response to sex pheromone by the male. These results are supported by further comparative studies of molecular docking, crystallographic structures, and EAG recording as a measure of biological response.

Key Words

Binding assay Bombykol Electroantennogram (EAG) recording Odorant-binding protein (OBP) Olfaction Pheromone- binding protein (PBP) Real-time polymerase chain reaction (PCR) Semiochemicals Sex pheromone Silkworm moth 

References

  1. Biessmann, H., Andronopoulou, E., Biessmann, M. R., Douris, V., Dimitratos, S. D., Eliopoulos, E., Guerin P. M., Iatrou, K., Justice, R. W., Krober, T., Marinotti, O., Tsitoura, P., Woods, D. F., and Walter, M. F. 2010. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One 5:e9471.CrossRefPubMedGoogle Scholar
  2. Bohbot, J. and Vogt, R. G. 2005. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem. Mol. Biol. 35:961–979.Google Scholar
  3. Breer, H., Krieger, J., and Raming, K. 1990. A novel class of binding proteins in the antennae of the silkmoth Antheraea pernyi. Insect Biochem. 20:735–740.CrossRefGoogle Scholar
  4. Damberger, F., Nikonova, L., Horst, R., Peng, G., Leal, W. S., and Wüthrich, K. 2000. NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 9:1038–1041.CrossRefPubMedGoogle Scholar
  5. Danty, E., Briand, L., Michard-Vanhée, C., Perez, V., Arnold, G., Gaudemer, O., Huet, D., Huet, J.C., Ouali, C., Masson, C., and Pernollet, J.C. 1999. Cloning and expression of a queen pheromone-binding protein in the honeybee: an olfactory-specific, developmentally regulated protein. J. Neurosci. 19:7468–7475.PubMedGoogle Scholar
  6. Dunda, J., Zheng, O., Tseng, J., Binkowski, A., Turpaz, Y., and Liang, J. 2006. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl. Acids Res. 34:W116–W118.CrossRefGoogle Scholar
  7. Forstner, M., Gohl, T., Breer, H., and Krieger, J. 2006. Candidate pheromone binding proteins of the silkmoth Bombyx mori. Invert. Neurosci. 6:177–187.CrossRefPubMedGoogle Scholar
  8. Gong, D. -P., Zhang, H. -J., Zhao, P., Xia, Q. -Y., and Xiang, Z. -H. 2009. The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332.CrossRefPubMedGoogle Scholar
  9. Gräter, F., Xu, W., Leal, W.S., and Grubmüller, H. 2006. Pheromone discrimination by the pheromone-binding protein of Bombyx mori. Structure 14:1577–1586.CrossRefPubMedGoogle Scholar
  10. Grosse-Wilde, E., Svatoš, A., and Krieger, J. 2006. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem. Senses 31:547–555.CrossRefPubMedGoogle Scholar
  11. Hooper, A. M., Dufour, S., He, X., Muck, A., Zhou, J. -J., Almeida, R., Field, L. M., Svatos, A., and Pickett, J. A. 2009. High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues. Chem. Commun. 14:5725–5727.CrossRefGoogle Scholar
  12. Horst, R., Damberger, F., Luginbühl, P., Güntert, P., Peng, G., Nikonova, L., Leal, W. S., and Wüthrich, K. 2001. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. USA 98:14374–14379.CrossRefPubMedGoogle Scholar
  13. Huey, R., Morris, G. M., Olson, A. J., and Goodsell, D. S. 2007. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28:1145–1152.CrossRefPubMedGoogle Scholar
  14. Kaissling, K. E. 2009. Olfactory perireceptor and receptor events in moths: A kinetic model revised. J. Comp. Physiol. A 195:895–922.CrossRefGoogle Scholar
  15. Kaissling, K. E., Kasang, G., Bestmann, H. J., Stransky, W., and Vostrowsky, O. 1978. A new pheromone of the silkworm moth Bombyx mori. Naturwissenschaften 65:382–384.CrossRefGoogle Scholar
  16. Kowcun, A., Honson, N., and Plettner, E. 2001. Olfaction in the gypsy moth, Lymantria dispar: effect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins. J. Biol. Chem. 276:44770–44776.CrossRefPubMedGoogle Scholar
  17. Krieger, J., Raming, K., and Breer, H. 1991. Cloning of genomic and complementary DNA encoding insect pheromone binding proteins: evidence for microdiversity. Biochim. Biophys. Acta. 1088:277–284.PubMedGoogle Scholar
  18. Krieger, J., GRosse-Wilde, E., GohL, T., and Breer, H. 2005. Candidate pheromone receptors of the silkmoth Bombyx mori. Eur. J. Neurosci. 21:2167–2176.CrossRefPubMedGoogle Scholar
  19. Laue, M. 2000. Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars. Arthropod Struct. Dev. 29:57–73.CrossRefPubMedGoogle Scholar
  20. Laughlin, J. D., Ha, T. S., Jones, D. N. M., and Smith, D. P. 2008. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133:1255–1265.CrossRefPubMedGoogle Scholar
  21. Leal, W.S. 2003. Proteins that make sense, pp 391–445, in G. J. Blomquist and R. G. Vogt (eds.). Insect Pheromone Biochemistry and Molecular Biology, The Biosynthesis and Detection of Pheromones and Plant Volatiles. Elsevier Academic Press, London.Google Scholar
  22. Leal, W. S., Chen, A. M., Ishida, Y., Chiang, V.P., Erickson, M. L., Morgan, T. I., and Tsuruda, J. M. 2005a. Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. USA 102:5386–5391.CrossRefPubMedGoogle Scholar
  23. Leal, W. S., Chen, A. M., and Erickson, M. L. 2005b. Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein. J. Chem. Ecol. 31:2493–2499.CrossRefPubMedGoogle Scholar
  24. Lee, D., Damberger, F. F., Peng, G., Horst, R., Güntert, P., Nikonova, L., Leal, W. S., and Wüthrich, K. 2002. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 531:314–318.CrossRefPubMedGoogle Scholar
  25. Liu, Z., Vidal, D. M., Syed, Z., Ishida, Y., and Leal, W. S. 2010. Pheromone binding to general odorant-binding proteins from the navel orangeworm. J. Chem. Ecol. 36:787–794.CrossRefPubMedGoogle Scholar
  26. Maddrell, S. H. P. 1969. Secretion by the Malphigian tubules of Rhodnius. The movement of ions and water. J. Exp. Biol. 51:71–97.Google Scholar
  27. Maida, R., Mameli, M., Müller, B., Krieger, J., and Steinbrecht, R. A. 2005. The expression pattern of four odorant-binding proteins in male and female silk moths, Bombyx mori. J. Neurocytol. 34:149–163.CrossRefPubMedGoogle Scholar
  28. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. 2009. Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 16:2785–2791.CrossRefGoogle Scholar
  29. Nakagawa, T., Sakurai, T., Nishioka, T., and Touhara, K. 2005. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307:1638–1642.CrossRefPubMedGoogle Scholar
  30. Nardi, J. B., Miller, L. A., Walden, K. K., Rovelstad, S., Wang, L., Frye, J. C., Ramsdell, K., Deem, L. S., and Robertson, H. M. 2003. Expression patterns of odorant-binding proteins in antennae of the moth Manduca sexta. Cell Tissue Res. 313:321–333.CrossRefPubMedGoogle Scholar
  31. Oldham, N. J., Krieger, J., Breer, H., Fischedick, A., Hoskovec, M., and Svatoš, A. 2000. Analysis of the silkworm moth pheromone binding protein-pheromone complex by electrospray ionization-mass spectrometry. Angew. Chem. Int. Ed. Engl. 39:4341–4343.Google Scholar
  32. Pelletier, J., Guidolin, A., Syed, Z., Cornel, A. J., and Leal, W. S. 2010. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J. Chem. Ecol. 36:245–246.CrossRefPubMedGoogle Scholar
  33. Pelosi, P., Zhou, J. -J., Ban, L. P., and Calvello, M. 2006. Soluble proteins in insect chemical communication. Cell Mol. Life Sci. 63:1658–1676.CrossRefPubMedGoogle Scholar
  34. Pesenti, M. E., Spinelli, S., Bezirard, V., Briand, L., Pernollet, J. C., Tegoni, M., and Cambillau, C. 2008. Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J. Mol. Biol. 380:158–169.CrossRefPubMedGoogle Scholar
  35. Pophof, B. 2004. Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem. Senses 29:117–125.CrossRefPubMedGoogle Scholar
  36. Robertson, H. M., Martos, R., Sears, C. R., Todres, E. Z., Walden, K. K., and Nardi, J. B. 1999. Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Mol. Biol. 8:501–518.CrossRefPubMedGoogle Scholar
  37. Sandler, B. H., Nikonova, L., Leal, W. S., and Clardy, J. 2000. Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 7:143–151.CrossRefPubMedGoogle Scholar
  38. Sanner, M. F. 1999. Python: A programming language for software integration and development. J. Mol. Graphics Mod. 117:57–61.Google Scholar
  39. Steinbrecht, R. A. 1998. Odorant-binding proteins: Expression and function. Ann. N. Y. Acad. Sci. 30:323–332.CrossRefGoogle Scholar
  40. Syed, Z., Ishida, Y., Taylor, K., Kimbrell, D. A., and Leal, W. S. 2006. Pheromone reception in fruit flies expressing a moth's odorant receptor. Proc. Natl. Acad. Sci. USA 103:16538–16543.CrossRefPubMedGoogle Scholar
  41. Syed, Z., Kopp, A., Kimbrell, D. A., and Leal, W. S. 2010. Bombykol receptors in the silkworm moth and the fruit fly. Proc. Natl. Acad. Sci. USA 107:9436–9439.CrossRefPubMedGoogle Scholar
  42. Van Den Berg, M. J. and Ziegelberger, G. 1991. On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J. Insect Physiol. 37:79–85.CrossRefGoogle Scholar
  43. Vogt, R. G. and Riddiford, L. M. 1981. Pheromone binding and inactivation by moth antennae. Nature 293:161–163.CrossRefPubMedGoogle Scholar
  44. Vogt, R. G., Rybczynski, R., and Lerner, M. R. 1991a. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J. Neurosci. 11:2972–2984.PubMedGoogle Scholar
  45. Vogt, R. G., Prestwich, G. D., and Lerner, M. R. 1991b. Odorant-binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J. Neurobiol 22:74–84.CrossRefPubMedGoogle Scholar
  46. Wadhams, L. J., Angst, M. E., and Blight, M. M. 1982. Responses of the olfactory receptors of Scolytus scolytus (F.) (Coleoptera, Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. J. Chem. Ecol. 8:477–492.CrossRefGoogle Scholar
  47. Wojtasek, H. and Leal, W. S. 1999. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 274:30950–30956.CrossRefPubMedGoogle Scholar
  48. Xu, P., Atkinson, R., Jones, D. N., and Smith, D. P. 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200.CrossRefPubMedGoogle Scholar
  49. Zhou, J. -J., Robertson, G., He, X., Dufour, S., Hooper, A. M., Pickett, J. A., Keep, N. H., and Field, L. M. 2009. Characterisation of Bombyx mori Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J. Mol. Biol. 389:529–545.CrossRefPubMedGoogle Scholar
  50. Zhou, J. -J., Field, L. M., and He, X. -L. 2010. Insect odorant-binding proteins: do they offer an alternative pest control strategy? Outlooks on Pest Management 21:31–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiaoli He
    • 1
  • George Tzotzos
    • 2
  • Christine Woodcock
    • 1
  • John A. Pickett
    • 1
  • Tony Hooper
    • 1
  • Linda M. Field
    • 1
  • Jing-Jiang Zhou
    • 1
  1. 1.Department of Biological Chemistry, Rothamsted ResearchHarpendenUK
  2. 2.Department of Chemistry and Analytical SciencesThe Open UniversityMilton KeynesUK

Personalised recommendations