Skip to main content
Log in

Responses of Mikania micrantha, an Invasive Weed to Elevated CO2: Induction of β-Caryophyllene Synthase, Changes in Emission Capability and Allelopathic Potential of β-Caryophyllene

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

To better understand the effect of predicted elevated levels of carbon dioxide (CO2) on an invasive weed Mikania micrantha, we constructed a suppressive subtractive hybridization (SSH) library from the leaves of M. micrantha exposed to CO2 at 350 and 750 ppm for 6 d, and isolated a novel gene named β-caryophyllene synthase. β-Caryophyllene synthase catalyses the conversion of farnesyl diphosphate to β-caryophyllene, a volatile sesquiterpene with allelopathic potential. Real-time PCR analysis revealed that gene expression of β-caryophyllene synthase in M. micrantha leaves was strongly induced in response to elevated CO2. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) analyses showed that emission levels of β-caryophyllene from leaves of M. micrantha increased when exposed to 750 ppm CO2. Bioassays showed that phytotoxicity of β-caryophyllene against Raphanus sativus, Brassica campestris, Lactuca sativa, and M. micrantha was dose-dependent and varied with the receptor plants and concentrations of CO2. β-Caryophyllene displayed higher phytotoxic effects at 750 ppm than those at 350 ppm CO2, especially on R. sativus. These results suggest that elevated atmospheric CO2 levels may enhance biosynthesis and phytotoxicity of allelochemicals in M. micrantha, one of the worst invasive weeds in the world, which in turn might enhance its potential allelopathic effect on neighboring native plants if released in bioactive concentrations. Further investigations are required to determine the adaptive responses of both invasive and native plants to a gradual increase of atmospheric CO2 to 750 ppm predicted over a 100 year period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelgaleil, S. A. M., and Hashinaga, F. 2007. Allelopathic potential of two sesquiterpene lactones from Magnolia grandiflora L. Biochem. Syst. Ecol. 35:737–742.

    Article  CAS  Google Scholar 

  • Abdelgaleil, S. A. M., Abdel-Razeek, N., and Soliman, S. A. 2009. Herbicidal activity of three sesquiterpene lactones on wild oat (Avena fatua) and their possible mode of action. Weed Sci. 57:6–9.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc. Acids Res. 25:3389–3402.

    Article  CAS  Google Scholar 

  • Anaya, A. L. 1999. Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit. Rev. Plant Sci. 18:697–739.

    Article  CAS  Google Scholar 

  • Bagchi, G. D., Haider, F., Dwivedi, P. D., Singh, A., and Naqvi, A. A. 2003. Essential oil constituents of Artemisia annua during different growth periods at monsoon conditions of Subtropical North Indian plains. J. Essent. Oil Res. 15:248–250.

    CAS  Google Scholar 

  • Beuf, L., Kurano, N., and Miyachi, S. 1999. Rubisco activase transcript (rca) abundance increases when the marine unicellular green alga Chlorococcum littorale is grown under high-CO2 stress. Plant Mol. Biol. 41:627–635.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Y., Jia, J. W., Crock, J., Lin, Z. X., Chen, X. Y., and Croteau, R. 2002. A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry. 61:523–529.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, R. M., and Aschehoug, E. T. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science. 290:521–523.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, A. X., Xiang, C. Y., Li, J. X., Yang, C. Q., Hu, W. L., Wang, L. J., Lou, Y. G., and Chen, X. Y. 2007. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry. 68:1632–1641.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P., and Sacchi, N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1:581–585.

    Article  PubMed  CAS  Google Scholar 

  • Cock, M. J. W., Ellison, C. A., Evans, H. C., and Ooi, P. A. C. 2000. Can failure be turned into success for biological control of mile-a-minute weed (Mikania micrantha)? pp. 155–167, in N. R. Spencer (ed.). Proceedings of the X International Symposium on Biological Control of Weeds. Bozeman, Montana.

    Google Scholar 

  • Collins, S., and Bell, G.. 2004. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature. 431:566–569.

    Article  PubMed  CAS  Google Scholar 

  • Constable, J. V. H., Guenther, A. B., Schimel, D. S., and Monson, R. K. 1999. Modelling changes in VOC emission in response to climate change in the continental United States. Global Change Biol. 5:791–806.

    Article  Google Scholar 

  • Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., and Sverdlov, E. D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA. 93:6025–6030.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. 1990. Plant strategies of manipulating predatorprey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.

    Article  CAS  Google Scholar 

  • Duke, S. O. 2007. Weeding with allelochemicals and allelopathya commentary. Pest Manag. Sci. 63:307–307.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., Mackenzie, F. T., Moore, III. B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science. 290:291–296.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, N. H., Weidenhamer, J. D., and Bradow, J. M. 1989. Inhibition and promotion of germination by several sesquiterpenes. J. Chem. Ecol. 15:1785–1793.

    Article  CAS  Google Scholar 

  • Gershenzon, J., and Croteau, R. 1993. Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes. Lipid Metabolism in Plants, pp. 339–388. CRC, Boca Raton.

    Google Scholar 

  • Gómez-Aparicio, L., and Canham, C. D. 2008. Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J. Ecol. 96:447–458.

    Article  Google Scholar 

  • Granados, J., and Körner, C. 2002. In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Global Change Biol. 8:1109–1117.

    Article  Google Scholar 

  • Hansen, U., and Seufert, G. 2003. Temperature and light dependence of β-caryophyllene emission rates. J. Geophys. Res. 108:4801.

    Article  CAS  Google Scholar 

  • Himanen, S. J., Nerg, A. M., Nissinen, A., Pinto, D. M., Stewart, C. N., Poppy, G. M., and Holopainen, J. K. 2009. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 181:174–186.

    Article  PubMed  Google Scholar 

  • Inderjit., and Duke, S. O. 2003. Ecophysiological aspects of allelopathy. Planta. 217:529–539.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, B. S., and Chong, T. V. 2002. Effects of aqueous extracts and decomposition of Mikania micrantha H. B. K. debris on selected agronomic crops. Weed Biol. Manag. 2:31–38.

    Article  Google Scholar 

  • Iwasaki, I., Hu, Q., Kurano, N., and Miyachi, S. 1998. Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a ‘high-CO2’ tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. J. Photochem. Photobiol. 44:184–190.

    Article  CAS  Google Scholar 

  • Jump, A. S., and Penuelas, J. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8: 1010–1020.

    Article  Google Scholar 

  • Kegge, W., and Pierik, R. 2010. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 15: 126–132.

    Article  PubMed  CAS  Google Scholar 

  • Kil, B. S., Han, D. M., Lee, C. H., Kim, Y. S., Yun, K. Y., and Yoo, H. G. 2000. Allelopathic effects of Artemisia lavandulaefolia. Korean J. Ecol. 23:149–155.

    Google Scholar 

  • Klironomos, J. N., Allen, M. F., Rillig, M. C., Piotrowski, J., Makvandi-Nejad, S., Wolfe, B. E., and Powell, J. R. 2005. Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature. 433:621–624.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. A., and Klasing, K. C. 2004. A role for immunology in invasion biology. Trends Ecol. Evol. 19:523–529.

    Article  PubMed  Google Scholar 

  • Legrand, C., Rengefors, K., Fistarol, G.. O., and Graneli, E. 2003. Allelopathy in phytoplankton: biochemical, ecological and evolutionary aspects. Phycologia. 42:406–419.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408.

    Article  PubMed  CAS  Google Scholar 

  • Macías, F. A., Torres, A., Molinllo, J. M. G., Varela, R. M., Castellano, D. 1996. Potential allelopathic sesquiterpene lactones from sunflower leaves. Phytochemistry. 43:1205–1215.

    Article  Google Scholar 

  • Maffei, E. M. D., Marin-Morales, M. A., Ruas, P. M., Ruas, C. F., and Matzenbacher, N. I. 1999. Chromosomal polymorphism in 12 populations of Mikania micrantha (Compositae). Genet. Mol. Biol. 22:433–444.

    Google Scholar 

  • Ni, G. Y., Song, L. Y., Zhang, J. L., and Peng, S. L. 2006. Effects of root extracts of Mikania micrantha H. B. K. on soil microbial community. Allelopathy J. 17:247–254.

    Google Scholar 

  • Niinemets, Ü., Loreto, F., and Reichstein, M. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9:180–186.

    Article  PubMed  CAS  Google Scholar 

  • Polle, A., Eiblmeier, M., Sheppard, L., and Murray, M. 2008. Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environ. 20:1317–1321.

    Article  Google Scholar 

  • Possell, M., Hewitt, N. C., and Beerling, D. J. 2005. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Global Change Biol. 11:60–69.

    Article  Google Scholar 

  • Rapparini, F., Baraldi, R., Miglietta, F., and Loreto, F. 2004. Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment. Plant Cell Environ. 27:381–391.

    Article  CAS  Google Scholar 

  • Rosenstiel, T. N., Potosnak, M. J., Griffin, K. L., Fall, R., and Monson, R. K. 2003. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature. 421:256–259.

    Article  PubMed  CAS  Google Scholar 

  • Sasek, T. W., and Strain, B. R. 1991. Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. Am. J. Bot. 78:69–75.

    Article  CAS  Google Scholar 

  • Shao, H., Peng, S. L., Wei, X. Y., Zhang, D. Q., and Zhang, C. 2005. Potential allelochemicals from an invasive weed Mikania micrantha H.B.K. J. Chem. Ecol. 31:1657–1668.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, T. D., and Singsaas, E. L. 1995. Why plants emit isoprene. Nature. 374:769–769.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D.R., and Kohli, R. K. 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit. Rev. Plant Sci. 22:239–311.

    Article  CAS  Google Scholar 

  • Song, L. Y., Wu, J. R., Li, C. H., Li, F. R., Peng, S. L., and Chen, B. M. 2009. Different responses of invasive and native species to elevated CO2 concentration. Atca Oecol. 35:128–135.

    Article  Google Scholar 

  • Staudt, M., Joffre, R., Rambal, S., and Kesselmeier, J. 2001. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol. 21:437–445.

    PubMed  CAS  Google Scholar 

  • Tiiva, P., Faubert, P., Michelsen, A., Holopainen, T., Holopainen, J. K., and Rinnan, R. 2008. Climatic warming increases isoprene emission from a subarctic heath. New Phytol. 180:853–863.

    Article  PubMed  CAS  Google Scholar 

  • Valladares, F., Gianoli, E., and Gómez, J. M. 2007. Ecological limits to plant phenotypic plasticity. New Phytol. 176:749–763.

    Article  PubMed  Google Scholar 

  • Walther, G. R. 2003. Plants in a warmer world. Perspect. Plant Ecol.6:169–185.

    Article  Google Scholar 

  • Wang, R. L., Peng, S. L., Zeng, R. S., Ding, L. W., and Xu, Z. F. 2009. Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha H. B. K. and allelopathic potential of β-caryophyllene. Allelopathy J. 24:35–44.

    Google Scholar 

  • Ward, J. K., and Kelly, J. K. 2004. Scaling up evolutionary responses to elevated CO2: lessons from Arabidopsis. Ecol. Lett. 7:427–440.

    Article  Google Scholar 

  • Williamson, G. B., and Richardson, D. 1988. Bioassays for allelopathy: Measuring treatment responses with independent controls. J. Chem. Ecol. 14:181–187.

    Article  Google Scholar 

  • Zhang, L. Y., Ye, W. H., Cao, H. L., and Feng, H. L. 2004. Mikania micrantha H. B. K. in China—an overview. Weed Res. 44:42–49.

    Article  Google Scholar 

  • Zotz, G., Cueni, N., and Körner, C. 2006. In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol. 20:763–769.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Azim Mallik for linguistic corrections and help with the introduction and discussion of the paper. Three anonymous reviewers provided valuable suggestions to improve the manuscript. This research was financially supported by the Key Program of Ministry of Education of China (No.704037), the Natural Science Fund of Guangdong (9251027501000006) and the National Natural Science Foundation of China (No.30670385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Lin Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, RL., Staehelin, C., Peng, SL. et al. Responses of Mikania micrantha, an Invasive Weed to Elevated CO2: Induction of β-Caryophyllene Synthase, Changes in Emission Capability and Allelopathic Potential of β-Caryophyllene. J Chem Ecol 36, 1076–1082 (2010). https://doi.org/10.1007/s10886-010-9843-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9843-x

Key Words

Navigation