Skip to main content
Log in

Lichen Compounds Restrain Lichen Feeding by Bank Voles (Myodes glareolus)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Some lichen compounds are known to deter feeding by invertebrate herbivores. We attempted to quantify the deterring efficiency of lichen compounds against a generalist vertebrate, the bank vole (Myodes glareolus). In two separate experiments, caged bank voles had the choice to feed on lichens with natural or reduced concentrations of secondary compounds. We rinsed air-dry intact lichens in 100% acetone to remove extracellular compounds non-destructively. In the first experiment, pairs of control and rinsed lichen thalli were hydrated and offered to the bank voles. Because the lichens desiccated fast, we ran a second experiment with pairs of ground control and compound-deficient thalli, each mixed with water to porridge. Eight and six lichen species were tested in the first and second experiment, respectively. In the first, bank voles preferred compound-deficient thalli of Cladonia stellaris and Lobaria pulmonaria, but did not discriminate between the other thallus pairs. This was likely a result of deterring levels of usnic and stictic acid in the control thalli. When lichens were served as porridge, significant preference was found for acetone-rinsed pieces of Cladonia arbuscula, C. rangiferina, Platismatia glauca, and Evernia prunastri. The increased preference was caused mainly by lower consumption of control thalli. Grinding and mixing of thallus structures prevented bank voles from selecting thallus parts with lower concentration of secondary compounds and/or strengthened their deterring capacity. We conclude that some lichen secondary compounds deter feeding by bank voles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aagnes, T. H. and Mathiesen, S. D. 1994. Food and snow intake, body mass and rumen function in reindeer fed lichen and subsequently starved for 4 days. Rangifer 14:33–37.

    Google Scholar 

  • Bialonska, D. and Dayan, F. 2005. Chemistry of lichen Hypogymnia physodes transplanted to an industrial region. J. Chem. Ecol. 31: 2975–2991.

    Article  CAS  PubMed  Google Scholar 

  • Cocchietto, M., Skert, N., Nimis, P. L., and Sava, G. 2002. A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146.

    Article  CAS  PubMed  Google Scholar 

  • Cook, W. E., Raisbeck, M. F., Cornish, T. E., Williams, E. S., Brown, B., Hiatt, G., and Kreeger, T. J. 2007. Paresis and death in elk (Cervus elaphus) due to lichen intoxication in Wyoming. J. Wildlife Dis. 43:498–503.

    Google Scholar 

  • Culberson, C. F. and Armaleo, D. 1992. Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp. Mycol. 16:52–63.

    Article  CAS  Google Scholar 

  • Culberson, C. F., Culberson, W. L., and Johnson, A. 1977. Chemical and Botanical Guide to Lichen Products. 2nd supplement. American Bryological and Lichenological Society.

  • Dubay, S. A., Hayward, G. D., and Martínes Del Rio, C. 2008. Nutritional value and diet preference of arboreal lichens and hypogeous fungi for small mammals in the Rocky Mountains. Can. J. Zool. 86:851–862.

    Article  CAS  Google Scholar 

  • Elix, J. A. and Tønsberg, T. 2006. Notes on the chemistry of Scandinavian Lobaria species. Graphis Scripta 18:27–28.

    Google Scholar 

  • Emmerich, R., Giez, I., Lange, O. L., and Proksch, P. 1993. Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 33:1389–1394.

    Article  CAS  Google Scholar 

  • Esseen, P. A. and Renhorn, K. E. 1998 Edge effects on epiphytic lichen in fragmented forests. Conserv. Biol. 12:211–217.

    Article  Google Scholar 

  • Gauslaa, Y. 2005. Lichen palatability depends on investments in herbivore defence. Oecologia 143:94–105.

    Article  PubMed  Google Scholar 

  • Gauslaa, Y. 2008. Mollusc grazing may constrain the ecological niche of the old forest lichen Pseudocyphellaria crocata. Plant Biol. 10:711–717.

    Article  CAS  PubMed  Google Scholar 

  • Hansson, L. 1978. Small mammal abundance in relation to environmental variables in three Swedish forest phases. Studia Forestalia Suecica 147:1–40.

    Google Scholar 

  • Hansson, L. 1979. Condition and diet in relation to habitat in bank voles Clethrionomys glareolus: population or community approach? Oikos 33:55–63.

    Article  Google Scholar 

  • Hansson, L. 1983. Competition between rodents in successional stages of taiga forests: Microtus agrestis vs. Clethrionomys glareolus. Oikos 40:258–266.

    Article  Google Scholar 

  • Hansson, L. 1985. Clethrionomys food: generic, specific and regional characteristics. Ann. Zool. Fenn. 22:315–318.

    Google Scholar 

  • Hansson, L. and Larsson, T. -B. 1978. Vole diet on experimentally managed reforestation areas in northern Sweden. Holarct. Ecol. 1:16–26.

    Google Scholar 

  • Huneck, S. 1999. The significance of lichens and their metabolites. Naturwissenschaften 86:559–570.

    Article  CAS  PubMed  Google Scholar 

  • Huneck, S. and Yoshimura, I. 1996. Identification of Lichen Substances. Springer, Berlin.

    Google Scholar 

  • Klein, D. R. 1982. Fire, lichens, and caribou. J. Range Manage. 35:390–395.

    Article  Google Scholar 

  • Krog, H., Østhagen, H., and Tønsberg, T. 1994. Lavflora. Norsk busk- og bladlav. Universitetsforlaget AS, Oslo.

    Google Scholar 

  • Larson, D. W. 1987. The absorbtion and release of water by lichens. Bibl. Lichenol. 25:351–360.

    Google Scholar 

  • Lawrey, J. D. 1980. Correlations between lichen secondary chemistry and grazing by Pallifera varia. Bryologist 83:328–334.

    Article  Google Scholar 

  • Lawrey, J. D. 1983a. Vulpinic and pinastric acids as lichen antiherbivore compounds: contrary evidence. Bryologist 86:365–369.

    CAS  Google Scholar 

  • Lawrey, J. D. 1983b. Lichen herbivore preference: A test of two hypotheses. Am. J. Bot. 70:1188–1194.

    Article  Google Scholar 

  • Leuckert, C., Ahmadijan, V., Culberson, C. F., and Johnson, A. 1990. Xanthones and depsidones of the lichen Lecanora dispersa. Mycologia 82:370–378.

    Article  CAS  Google Scholar 

  • Manojlovic, N. T., Solujic, S., and Sukdolak, S. 2002. Antimicrobial activity of an extract and anthraquionones from Caloplaca schaereri. Lichenologist 34:83–85.

    Article  Google Scholar 

  • McEvoy, M., Nybakken, L., Solhaug, K. A., and Gauslaa, Y. 2006. UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol. Prog. 5:221–229.

    Article  Google Scholar 

  • Nimis, P. and Skert, N. 2006. Lichen chemistry and selective grazing by the coleopteran Lasioderma serricorne. J. Env. Exp. Bot.55:175–182.

    Article  CAS  Google Scholar 

  • Nybakken, L. and Julkunen-Tiitto, R. 2006. UV-B induces usnic acid in reindeer lichens. Lichenologist 38:477–485.

    Article  Google Scholar 

  • Posner, B., Feige, G. B., and Huneck, S. 1992. Studies on the chemistry of the lichen genus Umbilicaria Hoffm. Z. Naturforsch. C47:1–9.

    Google Scholar 

  • Pöykkö, H., Hÿvärinen, M., and Backor, M. 2005. Removal of lichen secondary metabolites affect food choice and survival of lichenivorous moth larvae. Ecology 86:2623–2632.

    Article  Google Scholar 

  • Romagni, J. G., Meazza, G., Nanayakkara, N. P. D., and Dayan, F. E. 2000. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. FEBS Letters 480:301–305.

    Article  CAS  PubMed  Google Scholar 

  • Solhaug, K. A. and Gauslaa, Y. 1996. Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418.

    Article  Google Scholar 

  • Solhaug, K. A. and Gauslaa, Y. 2001. Acetone rinsing—a method for testing ecological and physiological roles of secondary compounds in living lichens. Symbiosis 30:301–315.

    CAS  Google Scholar 

  • Storeheier, P. V., Mathiesen, S. D., Tyler, N. J. C., and Olsen, M. A. 2002. Nutritive value of terricolous lichens for reindeer in winter. Lichenologist 34:247–257.

    Article  Google Scholar 

  • Sundset, M. A., Kohn, A., Mathiesen, S. D., and Præsteng, K. E. 2008. Eubacterium rangiferina, a novel usnic acid-resistant bacterium from the reindeer rumen. Naturwissenschaften 95:741–749.

    Article  CAS  PubMed  Google Scholar 

  • Terry, E. L., McLellan, B. N., and Watts, G. S. 2000. Winter habitat ecology of mountain caribou in relation to forest management. J. Appl. Ecol. 37:589–602.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Annie Aasen and Camilla Iversen, Dept. of Ecology and Natural Resource Management, Norwegian University of Life Sciences for invaluable help in the lab. Furthermore, we are grateful to Prof. Lars Fröberg, University of Lund, Sweden and an anonymous reviewer for useful comments on the manuscript. The permission to catch and use bank voles in the study was given by the Norwegian Directorate for Nature Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Line Nybakken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nybakken, L., Helmersen, AM., Gauslaa, Y. et al. Lichen Compounds Restrain Lichen Feeding by Bank Voles (Myodes glareolus). J Chem Ecol 36, 298–304 (2010). https://doi.org/10.1007/s10886-010-9761-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9761-y

Keywords

Navigation