Journal of Chemical Ecology

, Volume 36, Issue 1, pp 59–69 | Cite as

Direct and Indirect Effects of Invasive Plants on Soil Chemistry and Ecosystem Function

Review Article


Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.


Invasive plants Novel weapons hypothesis Nutrient cycling Allelopathy Glyphosate 


  1. Abd-alla, M. H., Omar, S. A., and Karanxha, S. 2000. The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl. Soil Ecol. 14:191–200.CrossRefGoogle Scholar
  2. Agrawal, A. A. 1998. Plant performance induced responses to herbivory and increased plant performance. Science 279:1201–1202.PubMedCrossRefGoogle Scholar
  3. Alla, M. M. N., and Younis, M. E. 1995. Herbicide effects on phenolic metabolism in maize (Zea mays L.) and soybean (Glycine max L.) seedlings. J. Exp. Bot. 46:1731–1736.CrossRefGoogle Scholar
  4. Allison, S. D., and Vitousek, P. M. 2004. Rapid nutrient cycling in leaf letter from invasive plants in Hawai’i. Oecologia 141:612–619.PubMedCrossRefGoogle Scholar
  5. Alonso-Amelot, M. E., Castillo, U., Smith, B. L., and Lauren, D. R. 1998. Excretion, through milk, of ptaquiloside in bracken-fed cows. A quantitative assessment. Lait 78:413–423.CrossRefGoogle Scholar
  6. Angers, D. A., and Caron, J. 1998. Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72.CrossRefGoogle Scholar
  7. Araújo, A. S. F., Monteiro, R. T. R., and Abarkeli, R. B. 2003. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804.PubMedCrossRefGoogle Scholar
  8. Ashton, I. W., Hyatt, L. A., Howe, K. M., Gurevitch, J., and Lerdau, M. T. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol. Appl. 15:1263–1272.CrossRefGoogle Scholar
  9. Batten, K. M., Six, J., Scowa, K. M., and Rillig, M. C. 2005. Plant invasion of native grassland on serpentine soils has no major effects upon selected physical and biological properties. Soil Biol. Biochem. 37:2277–2282.CrossRefGoogle Scholar
  10. Baylis, A. D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag. Sci. 56:299–308.CrossRefGoogle Scholar
  11. Blair, A. C., Nissen, S. J., Brunk, G. R., and Hufbauer, R. A. 2006. A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J. Chem. Ecol. 32:2327–2331.PubMedCrossRefGoogle Scholar
  12. Blank, R. R. 2008. Biogeochemistry of plant invasion: a case study with downy brome (Bromus tectorum). Invasive Plant Sci. Manag. 1:226–238.CrossRefGoogle Scholar
  13. Blank, R. R., and Young, J. A. 2004. Influence of three weed species on soil nutrient dynamics. Soil Sci. 169:385–397.CrossRefGoogle Scholar
  14. Borrgaard, O. K., and Gimsing, A. L. 2008. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 64:441–456.CrossRefGoogle Scholar
  15. Busse, M. D., Ratcliff, A. W., and Shestak, C. J. 2001. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem. 33:1777–1789.CrossRefGoogle Scholar
  16. Busse, M. D., Fiddler, G. O., and Ratcliff, A. W. 2004. Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content. Water Air Soil Pollut. 152:23–34.CrossRefGoogle Scholar
  17. Caldwell, B. A. 2005. Effects of invasive scotch broom on soil properties in a Pacific coastal prairie soil. Appl. Soil Ecol. 32:149–152.CrossRefGoogle Scholar
  18. Callaway, R. M., and Aschehoug, E. T. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523.PubMedCrossRefGoogle Scholar
  19. Callaway, R. M., and Ridenour, W. M. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436–443.CrossRefGoogle Scholar
  20. Callaway, R. M., Nadkarni, N. M., and Mahall, B. E. 1991. Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology 72:1484–1499.CrossRefGoogle Scholar
  21. Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055.PubMedCrossRefGoogle Scholar
  22. Callaway, R. M., Ridenour, W. M., Laboski, T., Weir, T., and Vivanco, J. M. 2005. Natural selection for resistance to the allelopathic effects of invasive plants. J. Ecol. 93:576–583.Google Scholar
  23. Cappuccino, N., and Arnason, J. T. 2006. Novel chemistry of invasive exotic plants. Biol. Lett. 2:189–193.PubMedCrossRefGoogle Scholar
  24. Cedergreen, N. 2008. Is the growth stimulation by low doses of glyphosate sustained over time? Environ. Pollut. 156:1099–1104.PubMedCrossRefGoogle Scholar
  25. Crocker, R. L., and Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 43: 427–448.CrossRefGoogle Scholar
  26. Crone, E. E., Marler, M., and Pearson, D. E. 2009. Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts. J. Appl. Ecol. 46:673–682.CrossRefGoogle Scholar
  27. Dassonville, N., Vanderhoven, S., Gruber, W., and Meerts, P. 2007. Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Ecoscience 14:230–240.CrossRefGoogle Scholar
  28. Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., and Meerts, P. 2008. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157:131–140.PubMedCrossRefGoogle Scholar
  29. DeLuca, T. H., Nilsson, M.-C., and Zackrisson, O. 2002. Nitrogen mineralization and phenol accumulation along a fire chronosequence in Northern Sweden. Oecologia 133:206–214.CrossRefGoogle Scholar
  30. DeLuca, T. H., Mackenzie, D., and Gundale, M. J. 2006. Biochar effects on soil nutrient transformationsm, pp. 252–270, in J. Lehmann and S. Joseph (eds.). Biochar for Environmental Management: Science and Technology. Earthscan, London.Google Scholar
  31. Duda, J. J., Freeman, D. C., Emlen, J. M., Belnap, J., Kitchen, S. G., Zak, J. C., Sobek, E., Tracy, M., and Montante, J. 2003. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biol. Fertil. Soils 38:72–77.CrossRefGoogle Scholar
  32. Duke, S. O., and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319–325.PubMedCrossRefGoogle Scholar
  33. Duke, S. O., Blair, A. C., Dayan, F. E., Johnson, R. D., Meepagala, K. M., Cook, D., and Bajsa, J. 2009. Is (-)-catechin a novel weapon of spotted knapweed (Centaurea stoebe)? J. Chem. Ecol. 35:141–153.PubMedCrossRefGoogle Scholar
  34. Eberbach, P. L., and Douglas, L. A. 1989. Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L. Plant Soil 119:15–23.CrossRefGoogle Scholar
  35. Ehrenfeld, J. G. 2004. Implications of invasive species for belowground community and nutrient processes. Weed Technol. 18:1232–1235.CrossRefGoogle Scholar
  36. Ehrenfeld, J. G., Kourtev, P., and Huang, W. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11:1287–1300.CrossRefGoogle Scholar
  37. Einhellig, F.A. 1996. Interactions involving allelopathy in cropping systems. Agron. J. 88: 886–893.Google Scholar
  38. Eker, S., Ozturk, L., Yazici, A., Erenoglu, B., Römheld, V., and Cakmak, I. 2006. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J. Agric. Food Chem. 54:10019–10025.PubMedCrossRefGoogle Scholar
  39. Ens, E. J., Bremner, J. B., French, K., and Korth, J. 2009a. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Invasions 11:275–287.CrossRefGoogle Scholar
  40. Ens, E. J., French, K., and Bremner, J. B. 2009b. Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata. Plant Soil 316:125–137.CrossRefGoogle Scholar
  41. Evans, R. D., Rimer, R., Sperry, L., and Belnap, J. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol. Appl. 11:1301–1310.CrossRefGoogle Scholar
  42. Feng, Y., and Thompson, D. G. 1990. Fate of glyphosate in a Canadian forest watershed. 2: persistence in foliage and soils. J. Agric. Food Chem. 38:1118–1125.CrossRefGoogle Scholar
  43. Feng, Y., Lei, Y., Wang, R., Callaway, R. M., Valiente-Banuet, A., Inderjit, Li, Y., and Zheng, Y. 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc. Natl. Acad. Sci. U. S. A. 106:1853–1856.PubMedCrossRefGoogle Scholar
  44. Gove, B., Power, S. A., Buckley, G. P., and Ghazoul, J. 2007. Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. J. Appl. Ecol. 44:374–384.CrossRefGoogle Scholar
  45. Grierson, P. F. 1992. Organic acids in the rhizosphere of Banksia integrifolia L. Plant Soil 144:259–265.CrossRefGoogle Scholar
  46. Grierson, P. F., and Adams, M. A. 2000. Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia. Soil Biol. Biochem. 32:1817–1827.CrossRefGoogle Scholar
  47. Grover, R., and Cessna, A. 1991. Environmental Chemistry of Herbicides. CRC Press, Boca Raton.Google Scholar
  48. Gundale, M. J., and DeLuca, T. H. 2006. Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem. For. Ecol. Manag. 231:86–93.CrossRefGoogle Scholar
  49. Hamilton, E. W. III, and Frank, D. A. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402.CrossRefGoogle Scholar
  50. Haney, R. L., Senseman, S. A., Hons, F. M., and Zuberer, D. A. 2000. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 48:89–93.CrossRefGoogle Scholar
  51. He, W.-M., Feng, Y., Ridenour, W. M., Thelen, G. C., Pollock, J. L., Diaconu, A., and Callaway, R. M. 2009. Novel weapons and invasion: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudates (±)-catechin. Oecologia 159:803–815.PubMedCrossRefGoogle Scholar
  52. Hernandez, A., Garcia-Plazaola, J. I., and Becerril, J. M. 1999. Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merr.). J. Agric. Food Chem. 47:2920–2925.PubMedCrossRefGoogle Scholar
  53. Herr, C., Chapuis-Lardy, L., Dassonville, N., Vanderhoeven, S., and Meerts, P. 2007. Seasonal effect of the exotic invasive plant Solidago gigantea on soil pH and P fractions. J. Plant Nutr. Soil Sci. 170:729–738.CrossRefGoogle Scholar
  54. Hierro, J. L., Maron, J. L., and Callaway, R. M. 2005. A biogeographic approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93:5–15.CrossRefGoogle Scholar
  55. Hoagland, R. E., and Duke, S. O. 1983. Relationships between phenylalanine ammonia-lyase activity and physiological responses of soybean (Glycine max) seedlings to herbicides. Weed Sci. 31:845–852.Google Scholar
  56. Inderjit, P. J. L., Callaway, R. M., and Hoben, W. 2008a. Phytotoxic effects of (±)-catechin In vitro, in soil, and in the field. PLoS ONE 3(7):e2536. doi:10.1371/journal.pone.0002536.PubMedCrossRefGoogle Scholar
  57. Inderjit, Seadstet, T. R., Callaway, R. M., and Kaur, J. 2008b. Allelopathy and plant invasions: traditional, congeneric, and biogeographical approaches. Biol. Invasions 10:875–890.CrossRefGoogle Scholar
  58. Jamieson, M. A., and Bowers, M. D. 2009. Iridoid glycoside variation in the invasive plant dalmation toadflax, Linaria dalmatica (Plantaginaceae), and sequestration by the biological control agent, Calophasia lunula. J. Chem. Ecol. Google Scholar
  59. Joffre, R., and Rambal, S. 1993. How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582.CrossRefGoogle Scholar
  60. Kelly, E. F., Chadwick, O. A., and Hilinski, T. E. 1998. The effects of plants on mineral weathering. Biogeochemistry 42:21–53.CrossRefGoogle Scholar
  61. Kollmann, J., Strobel, B. W., and Brunn Hansen, H. C. 2009. Climate change, invasive species and toxic plant substances in soil and water. IOP Conf. Series: Earth and Environmental Science 6:302022. doi:10.1088/1755-1307/6/0/302022.CrossRefGoogle Scholar
  62. Kueffer, C., Klingler, G., Zirfass, K., Schumacher, E., Edwards, P., and Güsewell, S. 2008. Invasive trees show only weak potential to impact nutrient dynamics in phosphorus-poor tropical forests in the Seychelles. Funct. Ecol. 22:359–366.CrossRefGoogle Scholar
  63. Lambers, H., Juniper, D., Cawthray, G. R., Veneklaas, E. J., and Martinez-Ferri, E. 2002. The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122.CrossRefGoogle Scholar
  64. Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.CrossRefGoogle Scholar
  65. Li, L., Li, S., Sun, J., Zhou, L., Bao, X., Zhang, H., and Zhang, F. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. U. S. A. 104:11192–11196.PubMedCrossRefGoogle Scholar
  66. Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., and Li, B. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177:706–714.PubMedCrossRefGoogle Scholar
  67. Lin, C., Owen, S. M., and Peñuelas, J. 2007. Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol. Biochem. 39:951–960.CrossRefGoogle Scholar
  68. Lupwayi, N. Z., Harker, K. N., Clayton, G. W., O’Donovan, J. T., and Blackshaw, R. E. 2009. Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric. Ecosyst. Environ. 129:171–176.CrossRefGoogle Scholar
  69. Lydon, J., and Duke, S. O. 1988. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J. Agric. Food Chem. 36:813–818.CrossRefGoogle Scholar
  70. Mallik, A. U., and Pellissier, F. 2000. Effects of Vaccinium myrtillus on spruce regeneration: testing the notion of coevolutionary significance of allelopathy. J. Chem. Ecol. 26:2197–2209.CrossRefGoogle Scholar
  71. Måren, I. E., Vandvik, V., and Ekelund, K. 2008. Restoration of bracken-invaded Calluna vulgaris heathlands: Effects on vegetation dynamics and non-target species. Biol. Conserv. 141:1032–1042.CrossRefGoogle Scholar
  72. Marrs, R. H., Frost, A. J., and Plant, R. A. 1991. Effect of mecoprop drift on some plant species of conservation interest when grown in standardized mixtures in microcosms. Environ. Pollut. 73: 25–42.PubMedCrossRefGoogle Scholar
  73. Martin, M. R., Tipping, P. W., and Sickman, J. O. 2009. Invasion by an exotic tree alters above and belowground ecosystem components. Biol. Invasions 11:1883–1894.CrossRefGoogle Scholar
  74. McGrath, D. A., and Binkley, M. A. 2009. Microstegium vimineum invasion changes soil chemistry and microarthropod communities in Cumberland Plateau forests. Southeast. Nat. 8:141–156.CrossRefGoogle Scholar
  75. McKenney, J. L., Cripps, M. G., Price, W. J., Hinz, H. L., and Schwarzländer, M. 2007. No difference in competitive ability between invasive North American and native European Lepidium draba populations. Plant. Ecol. 193:293–303.CrossRefGoogle Scholar
  76. Meier, C. L., and Bowman, W. D. 2008. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158:95–107.PubMedCrossRefGoogle Scholar
  77. Metlen, K. L., Aschehoug, E. T., and Callaway, R. M. 2009. Plant behavioural plasticity in secondary metabolites. Plant Cell Environ. 32:641–653.PubMedCrossRefGoogle Scholar
  78. Misson, J., Raghothama, K. G., Jain, A., Jouhet, J., Block, M. A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L., and Thibaud, M. C. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. U. S. A. 102:11934–11939.PubMedCrossRefGoogle Scholar
  79. Moore, J. K., Braymer, H. D., and Larson, A. D. 1983. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl. Environ. Microbiol. 46:316–320.PubMedGoogle Scholar
  80. Neumann, G., Kohls, S., Landsberg, E., Souza, K. S.-O., Yamada, T., and Römheld, V. 2006. Relevance of glyphosate transfer to non-target plants via the rhizosphere. J. Plant Dis. Protect. 20:963–969.Google Scholar
  81. Ormeño, E., Fernandez, C., and Mévy, J. 2007. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68:840–852.PubMedCrossRefGoogle Scholar
  82. Perry, L. G., Thelen, G. C., Ridenour, W. M., Callaway, R. M.,Paschke, M. V., and Vivanco, J. M. 2007. Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33:2337–2344.PubMedCrossRefGoogle Scholar
  83. Peterson, I. L., Hansen, H. C. B., Ravn, H. W., Sørenson, J. C., and Sørenson, H. 2007. Metabolic effects in rapeseed (Brassica napus L.) seedlings after root exposure to glyphosate. Pestic. Biochem. Physiol. 89:220–229.CrossRefGoogle Scholar
  84. Pipke, R., and Amrhein, N. 1988. Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl. Environ. Microbiol. 54: 2868–2870.PubMedGoogle Scholar
  85. Playsted, C. W. S., Johnston, M. E., Ramage, C. M., Edwards, D. G., Cawthray, G. R., and Lambers, H. 2006. Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol. 170:491–500.PubMedCrossRefGoogle Scholar
  86. Pollock, J. L., Callaway, R. M., Thelen, G. C., and Holben, W. E. 2009. Catechin-metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. J. Ecol. doi:10.1111/j.1365-2745.2009.01553.x.Google Scholar
  87. Powell, J. R., Levy-Booth, D. J., Gulden, R. H., Asbil, W. L., Campbell, R. G., Dunfield, K. E., Hamill, A. S., Hart, M. M., Lerat, S., Nurse, R. E., Pauls, K. P., Sikkema, P. H., Swanton, C. J., Trevors, J. T., and Klironomos, J. N. 2009. Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition. J. Appl. Ecol. 46:388–396.CrossRefGoogle Scholar
  88. Prober, S. M., and Lunt, I. E. 2009. Restoration of Themeda australis swards suppresses soil nitrate and enhances ecological resistance to invasion by exotic annuals. Biol. Invasions 11:171–181.CrossRefGoogle Scholar
  89. Ratcliff, A. W., Busse, M. D., and Shestak, C. J. 2006. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34:114–124.CrossRefGoogle Scholar
  90. Renz, M. J., and Blank, R. R. 2004. Influence of perennial pepperweed (Lepidium latifolium) biology and plant-soil relationships on management and restoration. Weed Technol. 18:1359–1363.CrossRefGoogle Scholar
  91. Rodgers, V. L., Wolfe, B. E., Werden, L. K., and Finzi, A. C. 2008. The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests. Oecologia 157: 459–471.PubMedCrossRefGoogle Scholar
  92. Rout, M., and Callaway, R. M. 2009. An invasive plant paradox. Science 324:734–735.PubMedCrossRefGoogle Scholar
  93. Sanon, A., Béguiristain, T., Cébron, A., Berthelin, J., Ndoye, I., Leyval, C., Sylla, S., and Duponnois, R. 2009. Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species. FEMS Microbiol. Ecol. 70:118–131.PubMedCrossRefGoogle Scholar
  94. Santos, A., and Flores, M. 1995. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol. 20:349–352.CrossRefGoogle Scholar
  95. Scharfy, D., Eggenschwiler, H., Olde Venterink, H., Edwards, P. J., and Güsewell, S. 2009. The invasive alien plant species Solidago gigantea alters ecosystem properties across habitats with differing fertility. J. Veg. Sci. doi:10.1111/j.1654-1103.2009.01105.x.Google Scholar
  96. Schwab, S. M., Johnson, E. L. V., and Menge, J. A. 1982. Influence of simazine on formation of vesicular-arbuscular mycorrhizae in Chenopodium quinona Wild. Plant Soil 64:283–287.CrossRefGoogle Scholar
  97. Sharma, G. P., and Raghubanshi, A. S. 2009. Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Appl. Soil Ecol. 42:134–140.CrossRefGoogle Scholar
  98. Soler, R., Harvey, J. A., Kamp, A. F. D., Vet, L. E. M., Van der Putten, W. H., Van Dam, N. M., Stuefer, J. F., Gols, R., Hordijk, C. A., and Bezemer, T. M. 2007. Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376.CrossRefGoogle Scholar
  99. Spencer, D. F., Tan, W., Liow, P.-S., Ksander, G. G., Whitehand, L. C., Weaver, S., Olson, J., and Newhouser, M. 2008. Evaluation of glyphosate for managing giant reed (Arundo donax). Invasive Plant Sci. Manag. 1:248–254.CrossRefGoogle Scholar
  100. Standish, R. J., Williams, P. A., Robertson, A. W. Scott, N. A., and Hedderley, D. I. 2004. Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants. Biol. Invasions 6:71–81.CrossRefGoogle Scholar
  101. Stermitz, F. R., Hufbauer, R. A., and Vivanco, J. M. 2009. Retraction. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 151:967.CrossRefGoogle Scholar
  102. Stevenson, F. J., and Cole, M. A. 1999. Cycles of the Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed. Wiley, New York.Google Scholar
  103. Tejada, M. 2009. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate+diflufenican herbicides. Chemosphere 76:365–373.PubMedCrossRefGoogle Scholar
  104. Tharayil, N., Alpert, P., and Bhowmik, P. 2008. Dual-purpose secondary compounds: allelochemicals of Centaurea also increase nutrient uptake. Ecological Society of America Annual Meeting, Abstract.Google Scholar
  105. Tharayil, N., Bhowmik, P., Alpert, P.,Walker, E., Amarasiriwardena, D., and Xing, B., 2009. Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol. 181:424–434.PubMedCrossRefGoogle Scholar
  106. Thorpe, A. S., Archer, V., and DeLuca, T. H. 2006. The invasive forb Centaurea maculosa increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32:118–122.CrossRefGoogle Scholar
  107. Thorpe, A. S., Thelen, G. C., Diaconu, A., and Callaway, R. M. 2009. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J. Ecol. 97:641–645.CrossRefGoogle Scholar
  108. Tiedemann, A. R., and Klemmedson, J. O. 1986. Long-term effects of mesquite removal on soil characteristics: I. nutrients and bulk density. Soil Sci. Soc. Am. J. 50:472–475.Google Scholar
  109. Triebwasser, D., Tharayil, N., Callaway, R. M., and Bhowmik, P. C. 2009. Diurnal rhythm of catechin exudation by invasive Centaurea maculosa. Annual Weed Science Society of America Meeting, Orlando, February 9–13.Google Scholar
  110. Ugolini, F. C., and Sletten, R. S. 1991. The role of proton donors in pedogenesis as revealed by soil solution studies. Soil Sci. 151:59–75.CrossRefGoogle Scholar
  111. United States Environmental Protection Agency. 2009. 2000–2001 Pesticide market estimates., accessed 28 November 2009.
  112. Vanderhoeven, S., Dassonville, N., and Meerts, P. 2005. Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 275:169–179.CrossRefGoogle Scholar
  113. Velini, E. D., Alves, E., Godoy, M. C., Meschede, D. K., Souza, R. T., and Duke, S. O. 2008. Glyphosate applied at low doses can stimulate plant growth. Pest Manag. Sci. 64:489–496.PubMedCrossRefGoogle Scholar
  114. Wang, B. L., Shen, J. B., Zhang, W. H., Zhang, F. S., and Neumann, G. 2007. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol. 176:581–589.PubMedCrossRefGoogle Scholar
  115. Wang, X., Tang, C., Guppy, C. N., and Sale, P. W. G. 2008. Phosphorus acquisition characteristics of cotton (Gossypium hisutumL.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant Soil 312:117–128.CrossRefGoogle Scholar
  116. Wardle, D. A., and Parkinson, D. 1991. Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass. Plant Soil 134:209–219.CrossRefGoogle Scholar
  117. Weaver, M. A., Krutz, L. J., Zablotowicz, R. M., and Reddy, K. N. 2007. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manag. Sci. 63:388–393.PubMedCrossRefGoogle Scholar
  118. Widenfalk, A., Bertilsson, S., Sundh, I., and Goedkoop, W. 2008. Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environ. Pollut. 152:576–584.PubMedCrossRefGoogle Scholar
  119. Zabaloy, M. C., Garland, J. L., and Gómez, M. A. 2008. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol. 40:1–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryAshland UniversityAshlandUSA
  2. 2.Division of Biological SciencesThe University of MontanaMissoulaUSA

Personalised recommendations