Skip to main content
Log in

Feeding Deterrence and Detrimental Effects of Pyrrolizidine Alkaloids Fed to Honey Bees (Apis mellifera)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Recent studies have shown the occurrence of plant derived pyrrolizidine alkaloids (PAs) in retail honeys and pollen loads, but little is known about how these compounds influence the fitness of foraging honey bees. In feeding experiments, we tested a mix of tertiary PAs and the corresponding N-oxides from Senecio vernalis, pure monocrotaline, and 1,2-dihydromonocrotaline in 50% (w/w) sucrose solutions. The bees were analyzed chemically to correlate the observed effects to the ingested amount of PAs. PA-N-oxides were deterrent at concentrations >0.2%. 1,2-Unsaturated tertiary PAs were toxic at high concentrations. The observed PAs mortality could be linked directly to the presence of the 1,2-double bond, a well established essential feature of PA cytotoxicity. In contrast, feeding experiments with 1,2-dihydromonocrotaline revealed no toxic effects. Levels of less than 50 μg 1,2-unsaturated tertiary PAs per individual adult bee were tolerated without negative effects. PA-N-oxides fed to bees were reduced partially to the corresponding tertiary PAs. Unlike some specialized insects, bees are not able to actively detoxify PAs through N-oxidation. To gain insight into how PAs are transmitted among bees, we tested for horizontal PA transfer (trophallaxis). Under laboratory conditions, up to 15% of an ingested PA diet was exchanged from bee to bee, disclosing a possible route for incorporation into the honey comb. In the absence of alternative nectar and pollen sources, PA-containing plants might exhibit a threat to vulnerable bee larvae, and this might affect the overall colony fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler, L. S. 2000. The ecological significance of toxic nectar. Oikos 91:409–420.

    Article  Google Scholar 

  • Baker, H. G. 1977. Non-sugar chemical constituents of nectar. Apidologie 8:349–356.

    Article  Google Scholar 

  • Betteridge, K., Cao, Y., and Colegate, S. M. 2005. Improved method for extraction and LC-MS analysis of pyrrolizidine alkaloids and their N-oxides in honey: Application to Echium vulgare honeys. J. Agric. Food Chem. 53:1894–1902.

    Article  PubMed  CAS  Google Scholar 

  • Boppré, M., Colegate, S. M., and Edgar, J. A. 2005. Pyrrolizidine alkaloids of Echium vulgare honey found in pure pollen. J. Agric. Food Chem. 53:594–600.

    Article  PubMed  Google Scholar 

  • Boppré, M., Colegate, S. M., Edgar, J. A., and Fischer, O. W. 2008. Hepatotoxic Pyrrolizidine Alkaloids in Pollen and Drying-Related Implications for Commercial Processing of Bee Pollen. J. Agric. Food Chem. 56:5662–5672.

    Article  PubMed  Google Scholar 

  • Culvenor, C. C. J. 1980. Alkaloids and human disease, pp. 124–141, in R. L. Smith and E.A. Bababunmi (eds.). Toxicology in the Tropics. Taylor and Francis, London.

    Google Scholar 

  • Culvenor, C. C., Edgar, J. A., Jago, M. V., Qutteridge, A., Peterson, J. E., and SMITH, L. W. 1976. Hepato- and pneumotoxicity of pyrrolizidine alkaloids and derivatives in relation to molecular structure. Chemico-biological Interactions 12:299–324.

    Article  PubMed  CAS  Google Scholar 

  • Cymerman Craig. J., and Purushothaman, K. K. 1970. Improved preparation of tertiary amine N-oxides. J. Org. Chem. 35:1721–1722.

    Article  PubMed  CAS  Google Scholar 

  • Deinzer, M. L., Thomson, P. A., Burgett, D. M., and Isaacson D. L. 1977. Pyrrolizidine alkaloids: Their occurrence in honey from tansy ragwort (Senecio jacobaea L.). Science 195:497–499.

    Article  PubMed  CAS  Google Scholar 

  • Detzel, A., and Wink, M. 1993. Attraction, deterrence or intoxication of bees (Apis mellifera) by plant alelochemicals. Chemoecology 4:8–18.

    Article  CAS  Google Scholar 

  • Edgar, J. A., Roeder, E., and Molyneux, R. J. 2002. Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J. Agric. Food Chem. 50:2719–2730.

    Article  PubMed  CAS  Google Scholar 

  • Eisner, T., Rossini, C., Gonzalez, A., Ivengar, V. K., Siegler, M. V. S., and Smedley, S. R. 2002. Paternal investment in egg defence, pp. 91–116, in M. Hilker, and T. Meiners (eds.). Chemoecology of Insect Eggs and Egg Deposition vol. Blackwell, Oxford.

  • Frei, H., Luthy, J., Brauchli, J., Zweifel, U., Wurgler, F. E., and Schlatter, C. 1992. Structure/activity relationships of the genotoxic potencies of sixteen pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem. Biol. Interact 83:1-22.

    Article  PubMed  CAS  Google Scholar 

  • Fu P. P., Xia Q., Lin G., and Chou M. W. 2004. Pyrrolizidine alkaloids—genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab. Rev. 36:1–55.

    Article  PubMed  CAS  Google Scholar 

  • Gaffal, P. K., and Gammal, E. 2003. Nektar und Honiganalyse als Prognose für den Phloemtransport von natürlichen Pflanzengiften? Drogenreport 16:9–17.

    Google Scholar 

  • Gegear, R. J., Manson, J. S., and Thomson, J. D. 2007. Ecological context influences pollinator deterrence by alkaloids in floral nectar. Ecology Letters 10:375–382.

    Article  PubMed  Google Scholar 

  • Gould, J. L., and Gould, C. G. 1995. The Honey Bee. Scientific American Library, New York.

    Google Scholar 

  • Hartmann, T., and Ober, D. 2008. Defense by pyrrolizidine alkaloids: developed by plants and recruited by insects, pp. 213–231, in A. Schaller (ed.). Induced Plant Resistance to Herbivory. Springer.

  • Hartmann, T., and Toppel, G. 1987. Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26:1639–1643.

    Article  CAS  Google Scholar 

  • Hartmann, T., and Witte, L. 1995. Chemistry, biology and chemoecology of the pyrrolizidine alkaloids, pp. 155–233, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, vol. 9. Pergamon, Oxford.

    Google Scholar 

  • Kempf, M., Beuerle, T., Bühringer, M., Denner, M., Trost, D., von der Ohe, K., Bhavanam, V. B., and Schreier, P. 2008. Pyrrolizidine alkaloids in honey: risk analysis by gas chromatography-mass spectrometry. Mol. Nutr. Food Res. 52:1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Landolt, P. J., and Lenczewski, B. 1993. Lack of evidence for the toxic nectar hypothesis: a plant alkaloid did not deter nectar feeding by Lepidoptera. Fla. Entomol. 76:556–566.

    Article  CAS  Google Scholar 

  • Lindigkeit, R., Biller, A., Buch, M., Schiebel, H. M., Boppré, M., and Hartmann, T. 1997. The two faces of pyrrolizidine alkaloids: The role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur. J. Biochem. 245:626–636.

    Article  PubMed  CAS  Google Scholar 

  • Macel, M., Bruinsma, M., Dijsktra, S. M., Ooijendijk, T., Niemeyer, H. M., and Klinkhamer, P. G. L. 2005. Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J. Chem. Ecol. 31:1493–1508.

    Article  PubMed  CAS  Google Scholar 

  • Marín-Loaiza, J. C., Ernst, L., Beuerle, T., Theuring, C., Céspedes, C. L., and Hartmann, T. 2008. Pyrrolizidine alkaloids of the endemic Mexican genus Pittocaulon and assignment of stereoisomeric 1,2-saturated necine bases. Phytochemistry 69:154–167.

    Article  PubMed  Google Scholar 

  • Masters, A. R. 1991. Dual role of pyrrolizidine alkaloids in nectar. J. Chem. Ecol. 17:195–205.

    Article  CAS  Google Scholar 

  • Mattocks, A. R. (ed) 1986. Chemistry and Toxicology of Pyrrolizidine Alkaloids. Academic, London.

    Google Scholar 

  • Narberhaus, I., Zintgraf, V., and Dobler, S. 2005. Pyrrolizidine alkaloids on three trophic levels—evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125.

    Article  CAS  Google Scholar 

  • Nicolson, S. W., and Thornburg, R. W. 2007. Nectar chemistry, pp. 215–264, in S. W. Nicolson, M. Nepi, and E. Pacini (eds.). Nectaries and Nectar. Springer, Dordrecht.

  • OECD/OCDE 1998. OECD guidelines for the testing of chemicals, Honeybees, Acute Toxicity Test.

    Google Scholar 

  • Raguso, R. A. 2008. Start making scents: the challenge of integrating chemistry into pollination ecology. Ent. Exper. Appl. 128:196–207.

    Article  CAS  Google Scholar 

  • RIVM Rijksinstituut voor Volksgezondheid en Milieu. 2007. RIKILT Institute of Food Safety, Risicobeoordeling inzake de Aanwezigheid van Pyrrolzidine Alkaloiden in Honing, http://www.vwa.nl/cdlpub/servlet/CDLServlet?p_file_id=22703 (accessed on May 20th, 2009). Wageningen, Netherlands.

  • Sadasivam, S., and Thayumanavan, B. 2003. Molecular Host Plant Resistance to Pests. CRC, New York, pp 207–209.

    Google Scholar 

  • Seeley, T. D. 1995. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press, Cambridge.

    Google Scholar 

  • Singaravelan, N., Nee’man, G., Inbar, M., and Izhaki, I. 2005. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31:2791–2804.

    Article  PubMed  CAS  Google Scholar 

  • Stegelmeier, B. L., Edgar, J. A., Colegate, S. M., Gardner, D. R., Schoch, T. K., Coulombe, R. A., and Molyneux, R. J. 1999. Pyrrolizidine alkaloid plants, metabolism and toxicity. J. Nat. Tox. 8:95-116.

    CAS  Google Scholar 

  • Tan, K., Guo, Y. H., Nicolson, S. W., Radloff, S. E., Song, Q. S., and Hepburn, H. R. 2007. Honeybee (Apis cerana) Foraging Responses to the Toxic Honey of Tripterygium hypoglaucum (Celastraceae): Changing Threshold of Nectar Acceptability. J. Chem. Ecol. 33:2209–2217.

  • Van Dam, N. M., Vuister, L. W. M., Bergshoeff, C., de Vos, H., and van der Meijden, E. 1995. The ‘raison d’etre of pyrrolizidine alkaloids in Cynoglossum officinale: deterrent effects against generalist herbivores. J. Chem. Ecol. 21:507-523.

    Article  Google Scholar 

  • Witte, L., Rubiolo, P., Bicchi, C., and Hartmann, T. 1993. Comparative analysis of pyrrolizidine alkaloids from natural sources by gas chromatography- mass spectrometry. Phytochemistry 32:187–196.

    Article  Google Scholar 

Download references

Acknowledgements

Ms von der Ohe, Ms Schönberger, and Ms Warner are thanked for technical assistance with the handling of bees. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, to P. S. project no. SCHR 211/22-1 and SCHR 211/23-1 and to T. B. project no. BE 3200/1-1 and BE 3200/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Beuerle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhard, A., Janke, M., von der Ohe, W. et al. Feeding Deterrence and Detrimental Effects of Pyrrolizidine Alkaloids Fed to Honey Bees (Apis mellifera). J Chem Ecol 35, 1086–1095 (2009). https://doi.org/10.1007/s10886-009-9690-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9690-9

Keywords

Navigation