Abstract
Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.
This is a preview of subscription content,
to check access.



References
Asante, K. S., Brophy, J. J., Doran, J. C., Goldsack, R. J., Hibbert, D. B., and Larmour, J. S. 2001. A comparative study of the seedling leaf oils of the spotted gums: species of the Corymbia (Myrtaceae), section Politaria. Aust. J. Bot. 49:55–66.
Baker, S. C., Elek, J. A., and Candy, S. G. 2002. A comparison of feeding efficiency, development time and survival of Tasmanian eucalyptus leaf beetle larvae Chrysophtharta bimaculata (Olivier) (Coleoptera: Chrysomelidae) on two hosts. Aust. J. Entomol. 41:174–181.
Bakr, E. M. 2005. A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. J. Appl. Entomol. 129:173–175.
Baly, J. S. 1862. Descriptions of the species belonging to the genus. Paropsis. J. Entomol. 2:291–310.
Bignell, C. M., Dunlop, P. J., and Brophy, J. J. 1998. Volatile leaf oils of some southwestern and southern Australian species of the genus Eucalyptus (Series 1). Part XIX. Flav. Frag. J. 13:131–139.
Bjorkman, C., Dalin, P., and Ahrne, K. 2008. Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol. 179:176–184.
Boland, D. J., Brooker, M. H., Chippendale, G. M., Hall, N., Hyland, B. P. M., Johnston, R. D., Kleinig, D. A., and Turner, J. D. 1992. Forest Trees of Australia. CSIRO Australia. Melbourne.
Brooker, M. I. H. 2000. A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust. Syst. Bot. 13:79–148.
Cab International. 2005. Forestry Compendium. CAB International. Wallingford.
Carne, P. B. 1966. Ecological characteristics of the eucalypt-defoliating chrysomelid Paropsis atomaria Ol. Aust. J. Zool. 14:647–672.
Carnegie, A. J., Lawson, S. A., Smith, T. E., Pegg, G. S., Stone, C., and Mcdonald, J. M. 2008. Healthy Hardwoods: A Field Guide to Pests, Diseases and Nutritional Disorders in Subtropical Hardwoods. Forest and Wood Products Australia. Melbourne.
Chenier, J. V. R., and Philogene, B. J. R. 1989. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. Chem. Ecol. 15:1729–1745.
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117–143.
Clarke, K. R., and Gorley, R. N. 2001. PRIMER v5: User Manual/Tutorial. PRIMER-E. Plymouth.
Dale, G., and Dieters, M. 2007. Economic returns from environmental problems: Breeding salt- and drought-tolerant eucalypts for salinity abatement and commercial forestry. Ecol. Engineer. 31:175–182.
De Assis, T. F. 2000. Production and use of Eucalyptus hybrids for industrial purposes. pp. 63–74 in: H. S. Dungey, M. J. Dieters, and D. G. Nikles (eds.). Hybrid Breeding and Genetics of Forest Trees. Proceedings of QFRI/CRC-SPF Symposium, 9–14 April 2000; Department of Primary Industries, Noosa, Queensland, Australia.
De Little, D. W., and Madden, J. L. 1975. Host preference in the Tasmanian eucalypt defoliating paropsini (Coleoptera: Chrysomelidae) with particular reference to Chrysophtharta bimaculata (Oliver) and Chrysophtharta agricola (Chapuis). J. Aust. Entomol. Soc. 14:387–394.
Duffy, M. P., Nahrung, H. F., Lawson, S. A., and Clarke, A. R. 2008. Direct and indirect effects of egg parasitism by Neopolycystus Girault sp. (Hymenoptera: Pteromalidae) on Paropsis atomaria Olivier (Coleoptera: Chrysomelidae). Aust. J. Entomol. 47:195–202.
Dungey, H. S., and Potts, B. M. 2003. Eucalypt hybrid susceptibility to Gonipterus scutellatus (Coleoptera: Curculionidae). Aust. Ecol. 28:70–74.
Dunlop, P. J., Bignell, C. M., Brooker, M. I. H., Brophy, J. J., and Hibbert, D. B. 1999. Use of gas chromatograms of essential leaf oils to compare eight taxa of genus Angophora (Myrtaceae): possible relationships to the genus Eucalyptus. Biochem. Systemat. Ecol. 27:815–830.
Edwards, P. B., Wanjura, W. J., and Brown, W. V. 1993. Selective herbivory by Christmas beetles in response to intraspecific variation in Eucalyptus. Oecologia. 95:551–557.
Floate, K. D., and Whitham, T. G. 1994. Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can. J. Bot. 73:1–13.
Fox, L. R., and Macauley, B. J. 1977. Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia. 29:145–162.
Fritz, R. S., Moulia, C., and Newcombe, G. 1999. Resistance of hybrid plants and animals to herbivores, pathogens and parasites. Annu. Rev. Ecol. Systemat. 30:365–391.
Griffin, A. R., Burgess, I. P., and Wolf, L. 1988. Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit: a review. Aust. J. Bot. 36:41–66.
Hallgren, P., Ikonen, A., Hjalten, J., and Roininen, H. 2003. Inheritance patterns of phenolics in F1, F2 and back-cross hybrids of willows: implications for herbivore responses to hybrid plants. J. Chem. Ecol. 29:1143–1158.
Hayes, R. A., Morelli, T. L., and Wright, P. C. 2006. Volatile components of lemur scent secretions vary throughout the year. Amer. J. Primatol. 68:1202–1207.
Henery, M. L., Henson, M., Wallis, I. R., Stone, C., and Foley, W. J. 2008. Predicting crown damage to Eucalyptus grandis by Paropsis atomaria with direct and indirect measures of leaf composition. For. Ecol. Manage. 255:3642–3651.
Jones, T. H., Potts, B. M., Vaillancourt, R. E., and Davies, N. W. 2002. Genetic resistance of Eucalyptus globulus to autumn gum moth defoliation and the role of cuticular waxes. Can. J. For. Res. 32:1961–1969.
Jordan, G. J., Potts, B. M., and Clarke, A. R. 2002. Susceptibility of Eucalyptus globulus ssp. globulus to sawfly (Perga affinis ssp. insularis) attack and its potnetial impact on plantation productivity. For. Ecol. Manage. 160:189–199.
Kaplan, E. L., and Meier, P. 1958. Non-parametric estimation from incomplete observations. J. Amer. Stat. Assoc. 53:457–481.
Keszei, A., Brubaker, C. L., and Foley, W. J. 2008. A molecular perspective on terpene variation in Australian Myrtaceae. Aust. J. Bot. 56:197–213.
Kitamura, M., Nakamura, T., Hattori, K., Ishida, T. A., Shibita, S., Sato, H., and Kimura, M. T. 2007. Among-tree variation in leaf trits and herbivore attacks in a deciduous oak, Quercus dentata. Scan. J. For. Res. 22:211–218.
Ladiges, P. Y., and Udovicic, F. 2000. Comment on a new classification of the Eucalypts. Aust. Syst. Bot. 13:149–152.
Larsson, J., and Ohmart, C. P. 1988. Leaf age and performance of the leaf beetle Paropsis atomaria. Ecol. Entomol. 13:19–24.
Lee, D. 2007. Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia. Aust. For. 70:11–16.
Lee, D., Huth, J. R., Brawner, J. T., and DICKINSON, G. R. in press. Comparative performance of Corymbia hybrids and parental species in subtropical Queensland and implications for breeding and deployment. Silv. Genet.
Miller, D. R. 2007. Limonene: Attractant kairomone for white pine cone beetles (Coleoptera : Scolytidae) in an eastern white pine seed orchard in western North Carolina. J. Econ. Entomol. 100:815–822.
Nahrung, H. F. 2006. Paropsine beetles (Coleoptera: Chrysomelidae) in south-eastern Queensland hardwood plantations: Identifying potential pest species. Aust. For. 69:270–274.
Nahrung, H. F., and Allen, G. R. 2003. Intra-plant host selection, oviposition preference and larval survival of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae: Paropsini) between foliage types of a heterophyllous host. Agric. For. Entomol. 5:155–162.
Nahrung, H. F., Dunstan, P. K., and Allen, G. R. 2001. Larval gregariousness and neonate establishment of the eucalypt-feeding beetle Chrysophtharta agricola (Coleoptera: Chrysomelidae: Paropsini). Oikos. 94:358–364.
Nahrung, H. F., Schutze, M. K., Clarke, A. R., Duffy, M. P., Dunlop, E. A., and Lawson, S. A. 2008. Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. For. Ecol. Manage. 255:3515–3523.
O’reilly-Wapstra, J. M., Potts, B. M., Mcarthur, C., Davies, N. W., and Tilyard, P. 2005. Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in a Eucalyptus species. J. Chem. Ecol. 31:519–537.
Ochieng, J. W., Shepherd, M., Baverstock, P. R., Nikles, G., Lee, D. J., and Henry, R. J. 2008. Genetic variation within two sympatric spotted gum eucalypts exceeds between taxa variation. Silv. Genet. 57:249–256.
Ochieng, J. W., Henry, R. J., Baverstock, P. R., Steane, D. A., and Shepherd, M. 2007a. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Mol. Phylogenet. Evol. 44:752–764.
Ochieng, J. W., Steane, D. A., Ladiges, P. Y., Baverstock, P. R., Henry, R. J., and Shepherd, M. 2007b. Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genet. Molec. Biol. 30: 1125–1134.
Ohmart, C. P. 1991. Role of food quality in the popluation dymanics of chrysomelid beetles feeding on Eucalyptus. For. Ecol. Manage. 39:35–46.
Ohmart, C. P., and Larsson, S. 1989. Evidence for absorption of eucalypt essential oils by Paropsis atomaria Oliver (Coleoptera: Chrysomelidae). J. Aust. Entomol. Soc. 28:201–205.
Ohmart, C. P., Thomas, J. R., and Stewart, L. G. 1987. Nitrogen, leaf toughness and the population dynamics of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae)—a hypothesis. J. Aust. Entomol. Soc. 26:203–207.
Panasiuk, O. 1984. Response of Colorado potato beetles, Leptinotarsa decemlineata (Say), to volatile components of tansy, Tanacetum vulgare. J. Chem. Ecol. 10:1325–1333.
Potts, B. M., and Dungey, H. S. 2004. Interspecific hybridisation of Eucalyptus: key issues for breeders and geneticists. New For. 27:115–138.
Rapley, L. P., Allen, G. R., and Potts, B. M. 2004a. Genetic variation in Eucalyptus globulus in relation to susceptibility from attack by the southern eucalypt leaf beetle, Chrysophtharta agricola. Aust. J. Bot. 52:747–756.
Rapley, L. P., Allen, G. R., and Potts, B. M. 2004b. Genetic variation of Eucalyptus globulus in relation to autumn gum moth Mnesampela privata (Lepidoptera: Geometridae) oviposition preference. For. Ecol. Manage. 194:169–175.
Rapley, L. P., Allen, G. R., and Potts, B. M. 2004c. Susceptibility of Eucalyptus globulus to Mnesampela privata defoliation in relation to a specific foliar wax compound. Chemoecol. 14:157–163.
Raymond, C. A. 1995. Genetic variation in Eucalyptus regnans and Eucalyptus nitens for levels of observed defoliation caused by the Eucalyptus leaf beetle, Chrysophtharta bimaculata Olivier, in Tasmania. For. Ecol. Manage. 72:21–29.
Scott, S. L., Mcarthur, C., Potts, B. M., and Joyce, K. 2002. Possum browsing—the downside to a eucalypt hybrid developed for frost tolerance in plantation forestry. For. Ecol. Manage. 157:231–245.
Shepherd, M., Kasem, S., Ablett, G., Ochieng, J., and Crawford, A. 2008. Genetic structuring in the spotted gum complex (genus Corymbia section Politaria). Aust. Systemat. Bot. 21:15–25.
Steinbauer, M. J. 2001. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation. Aust. For. 64:32–37.
Steinbauer, M. J., Schiestl, F. P., and Davies, N. W. 2004. Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different ages. J. Chem. Ecol. 30:1117–1142.
Strauss, S. Y. 1994. Levels of herbivory and parasitism in host hybrid zones. Trends Ecol. Evol. 9:209–214.
Thompson, J. N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47:3–14.
Acknowledgments
We thank Dr Simon Lawson (QPIF DEEDI) for field assistance and comments on the manuscript, Dr Chris Moore (QPIF DEEDI) for preliminary analyses of foliage and helpful discussions, Drs Martin Steinbauer (La Trobe University, Melbourne) and Manon Griffiths (QPIF DEEDI) for ms comments; Dr David Lee (QPIF DEEDI) for access to field trials. This work was funded with a grant from the Queensland Department of Tourism, Regional Development and Industry, Forestry Plantations Queensland, Forest Enterprises Australia Ltd. and Integrated Tree Cropping Ltd.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1
Retention times, kovats retention index and tentative identities of components detected in hexane extracts of Corymbia leaves, and the percentage of replicates of each taxon in which the component was identified. Unidentified components are designated “?”
Ret. Time (min) | Kovats Index | Name | CCV | CT × CCV | CT |
3.566 | 901 | (E)-2-hexenal | 0 | 0 | 100 |
3.614 | 905 | m-xylene | 100 | 100 | 0 |
4.339 | 956 | α-pinene | 100 | 100 | 100 |
5.064 | 999 | β-pinene | 80 | 100 | 100 |
5.398 | 1023 | 1,2,3-trimethyl benzene | 80 | 100 | 100 |
5.87 | 1054 | ? | 60 | 0 | 0 |
5.93 | 1058 | limonene | 80 | 100 | 0 |
6.146 | 1071 | 3-carene | 20 | 100 | 100 |
6.297 | 1080 | 1,8-cineole | 0 | 60 | 0 |
6.349 | 1083 | ? | 60 | 0 | 0 |
6.788 | 1111 | ? | 100 | 20 | 40 |
7.703 | 1176 | ? | 20 | 40 | 0 |
7.974 | 1193 | ? | 40 | 0 | 0 |
8.483 | 1232 | ? | 60 | 0 | 0 |
9.109 | 1278 | ? | 20 | 0 | 0 |
9.589 | 1314 | hydrocarbon | 20 | 100 | 100 |
9.937 | 1342 | methyl naphthalene | 80 | 100 | 100 |
11.109 | 1437 | cycloisolongifolene | 40 | 80 | 0 |
11.232 | 1447 | 4,11,11-trimethyl-8-methylene bicyclo[7,2,0]undec-4-ene | 100 | 100 | 100 |
11.443 | 1465 | alloaromadendrene | 40 | 60 | 0 |
11.604 | 1478 | α-cubebene | 0 | 60 | 0 |
12.12 | 1523 | β-patchoulene | 0 | 20 | 0 |
12.16 | 1527 | sesquiterpene | 100 | 40 | 80 |
12.537 | 1561 | 1,2,3,4,6,8a-hexahydro-1-isopropyl-4,7-dimethylnaphthalene | 80 | 80 | 0 |
12.846 | 1588 | elemol | 100 | 0 | 0 |
13.46 | 1646 | sesquiterpene | 100 | 100 | 100 |
13.622 | 1662 | 1,2,6-hexanetriol | 60 | 80 | 80 |
13.737 | 1673 | ? | 80 | 40 | 0 |
13.83 | 1681 | ? | 0 | 20 | 0 |
13.94 | 1691 | ? | 80 | 40 | 0 |
13.975 | 1695 | ? | 80 | 40 | 0. |
14.143 | 1711 | sesquiterpene | 100 | 0 | 0 |
14.207 | 1718 | ? | 0 | 80 | 60 |
16.042 | 1906 | oxygenated hydrocarbon | 80 | 100 | 100 |
16.942 | 2003 | ? (N-containing) | 60 | 100 | 100 |
17.377 | 2055 | octadecanol | 0 | 20 | 100 |
18.517 | 2192 | ? (N-containing) | 0 | 40 | 80 |
19.171 | 2275 | ? | 80 | 20 | 20 |
20.664 | 2472 | ? | 0 | 40 | 0 |
20.713 | 2478 | hydrocarbon | 60 | 100 | 100 |
20.851 | 2496 | hydrocarbon | 60 | 100 | 100 |
20.885 | 2501 | hydrocarbon | 0 | 20 | 80 |
21.92 | 2633 | ? | 0 | 100 | 100 |
22.253 | 2674 | hydrocarbon | 20 | 100 | 80 |
22.385 | 2690 | hydrocarbon | 0 | 100 | 100 |
23.252 | 2794 | hydrocarbon | 60 | 100 | 100 |
23.315 | 2802 | hydrocarbon | 40 | 80 | 100 |
23.524 | 2826 | hydrocarbon | 80 | 100 | 100 |
23.74 | 2851 | ? | 0 | 20 | 80 |
23.834 | 2862 | ? | 40 | 0 | 0 |
24.519 | 2939 | hydrocarbon | 100 | 100 | 100 |
24.833 | 2974 | ? | 20 | 0 | 0 |
24.868 | 2978 | ? | 20 | 0 | 0 |
25.006 | 2993 | ? | 20 | 20 | 0 |
26.149 | 3115 | eicosane | 100 | 100 | 100 |
28.568 | 3357 | ? | 0 | 0 | 20 |
28.896 | 3388 | ? | 20 | 0 | 0 |
28.916 | 3390 | ? | 20 | 0 | 0 |
Appendix 2
Mean ± s.e. percentage area under the peak for compounds (identified by retention time) used to distinguish between pairs of taxa (A) CCV vs. CT; (B) CCV vs. CT × CCV; (C) CT vs. CT × CCV
a | |||
Retention time | Mean % area-CCV | Mean % area-CT | % contribution to group dissimilarity |
12.846 | 32.3 ± 7.89 | 0 | 6.68 |
3.566 | 0 | 5.51 ± 1.07 | 4.34 |
23.252 | 1.30 ± 1.10 | 16.6 ± 1.62 | 4.17 |
14.143 | 4.34 ± 1.07 | 0 | 4.02 |
5.93 | 12.7 ± 5.54 | 0 | 3.81 |
24.519 | 3.37 ± 2.07 | 33.8 ± 2.47 | 3.59 |
26.149 | 1.50 ± 0.61 | 25.0 ± 2.02 | 3.47 |
3.614 | 1.93 ± 1.14 | 0 | 2.98 |
22.385 | 0 | 1.03 ± 0.18 | 2.87 |
23.524 | 0.43 ± 0.19 | 5.14 ± 0.75 | 2.49 |
4.339 | 22.5 ± 8.18 | 3.33 ± 1.24 | 2.42 |
13.46 | 5.60 ± 1.20 | 0.21 ± 0.05 | 2.39 |
17.377 | 0 | 0.44 ± 0.10 | 2.28 |
21.920 | 0 | 0.38 ± 0.03 | 2.25 |
19.171 | 1.14 ± 0.72 | 0.01 ± 0.01 | 2.18 |
6.146 | 1.14 ± 1.14 | 0.34 ± 0.11 | 2.15 |
b | |||
Retention time | Mean % area-CCV | Mean % area-CT × CCV | % contribution to group dissimilarity |
12.846 | 32.3 ± 7.89 | 0 | 7.70 |
14.143 | 4.34 ± 1.07 | 0 | 4.64 |
23.252 | 1.30 ± 1.10 | 10.5 ± 0.65 | 4.07 |
5.93 | 12.7 ± 5.54 | 0.56 ± 0.03 | 3.29 |
6.146 | 1.14 ± 1.14 | 1.49 ± 0.38 | 3.17 |
20.851 | 0.15 ± 0.06 | 3.02 ± 0.35 | 3.01 |
24.519 | 3.37 ± 2.07 | 18.1 ± 1.70 | 2.97 |
20.713 | 0.17 ± 0.07 | 2.75 ± 0.28 | 2.86 |
22.385 | 0 | 0.53 ± 0.14 | 2.76 |
21.923 | 0 | 0.45 ± 0.16 | 2.71 |
19.171 | 1.14 ± 0.72 | 0.04 ± 0.04 | 2.45 |
22.253 | 0.06 ± 0.06 | 0.57 ± 0.08 | 2.43 |
26.149 | 1.50 ± 0.61 | 9.34 ± 0.53 | 2.40 |
23.524 | 0.43 ± 0.19 | 3.32 ± 0.31 | 2.36 |
6.788 | 0.53 ± 0.13 | 0.03 ± 0.03 | 2.37 |
8.483 | 1.24 ± 0.53 | 0 | 2.28 |
c | |||
Retention time | Mean % area-CT | Mean % area-CT × CCV | % contribution to group dissimilarity |
3.566 | 5.51 ± 1.07 | 0 | 7.72 |
3.614 | 0 | 4.08 ± 0.59 | 7.18 |
4.339 | 3.33 ± 1.24 | 30.5 ± 1.24 | 5.46 |
5.93 | 0 | 0.56 ± 0.03 | 4.42 |
13.46 | 0.21 ± 0.05 | 4.94 ± 0.75 | 4.14 |
17.377 | 0.44 ± 0.10 | 0.11 ± 0.11 | 3.37 |
23.74 | 0.39 ± 0.17 | 0.14 ± 0.14 | 2.89 |
12.537 | 0 | 0.21 ± 0.07 | 2.84 |
20.851 | 0.38 ± 0.09 | 3.02 ± 0.35 | 2.76 |
20.885 | 0.24 ± 0.07 | 0.13 ± 0.13 | 2.70 |
20.713 | 0.39 ± 0.11 | 2.75 ± 0.28 | 2.63 |
11.109 | 0 | 0.13 ± 0.05 | 2.51 |
26.149 | 25.04 ± 2.02 | 9.34 ± 0.53 | 2.48 |
Rights and permissions
About this article
Cite this article
Nahrung, H.F., Waugh, R. & Andrew Hayes, R. Corymbia Species and Hybrids: Chemical and Physical Foliar Attributes and Implications for Herbivory. J Chem Ecol 35, 1043–1053 (2009). https://doi.org/10.1007/s10886-009-9682-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10886-009-9682-9