Skip to main content
Log in

Corymbia Species and Hybrids: Chemical and Physical Foliar Attributes and Implications for Herbivory

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asante, K. S., Brophy, J. J., Doran, J. C., Goldsack, R. J., Hibbert, D. B., and Larmour, J. S. 2001. A comparative study of the seedling leaf oils of the spotted gums: species of the Corymbia (Myrtaceae), section Politaria. Aust. J. Bot. 49:55–66.

    Article  Google Scholar 

  • Baker, S. C., Elek, J. A., and Candy, S. G. 2002. A comparison of feeding efficiency, development time and survival of Tasmanian eucalyptus leaf beetle larvae Chrysophtharta bimaculata (Olivier) (Coleoptera: Chrysomelidae) on two hosts. Aust. J. Entomol. 41:174–181.

    Article  Google Scholar 

  • Bakr, E. M. 2005. A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. J. Appl. Entomol. 129:173–175.

    Article  Google Scholar 

  • Baly, J. S. 1862. Descriptions of the species belonging to the genus. Paropsis. J. Entomol. 2:291–310.

    Google Scholar 

  • Bignell, C. M., Dunlop, P. J., and Brophy, J. J. 1998. Volatile leaf oils of some southwestern and southern Australian species of the genus Eucalyptus (Series 1). Part XIX. Flav. Frag. J. 13:131–139.

    Article  CAS  Google Scholar 

  • Bjorkman, C., Dalin, P., and Ahrne, K. 2008. Leaf trichome responses to herbivory in willows: induction, relaxation and costs. New Phytol. 179:176–184.

    Article  PubMed  Google Scholar 

  • Boland, D. J., Brooker, M. H., Chippendale, G. M., Hall, N., Hyland, B. P. M., Johnston, R. D., Kleinig, D. A., and Turner, J. D. 1992. Forest Trees of Australia. CSIRO Australia. Melbourne.

    Google Scholar 

  • Brooker, M. I. H. 2000. A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust. Syst. Bot. 13:79–148.

    Article  Google Scholar 

  • Cab International. 2005. Forestry Compendium. CAB International. Wallingford.

    Google Scholar 

  • Carne, P. B. 1966. Ecological characteristics of the eucalypt-defoliating chrysomelid Paropsis atomaria Ol. Aust. J. Zool. 14:647–672.

    Article  Google Scholar 

  • Carnegie, A. J., Lawson, S. A., Smith, T. E., Pegg, G. S., Stone, C., and Mcdonald, J. M. 2008. Healthy Hardwoods: A Field Guide to Pests, Diseases and Nutritional Disorders in Subtropical Hardwoods. Forest and Wood Products Australia. Melbourne.

    Google Scholar 

  • Chenier, J. V. R., and Philogene, B. J. R. 1989. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J. Chem. Ecol. 15:1729–1745.

    Article  CAS  Google Scholar 

  • Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117–143.

    Article  Google Scholar 

  • Clarke, K. R., and Gorley, R. N. 2001. PRIMER v5: User Manual/Tutorial. PRIMER-E. Plymouth.

    Google Scholar 

  • Dale, G., and Dieters, M. 2007. Economic returns from environmental problems: Breeding salt- and drought-tolerant eucalypts for salinity abatement and commercial forestry. Ecol. Engineer. 31:175–182.

    Article  Google Scholar 

  • De Assis, T. F. 2000. Production and use of Eucalyptus hybrids for industrial purposes. pp. 63–74 in: H. S. Dungey, M. J. Dieters, and D. G. Nikles (eds.). Hybrid Breeding and Genetics of Forest Trees. Proceedings of QFRI/CRC-SPF Symposium, 9–14 April 2000; Department of Primary Industries, Noosa, Queensland, Australia.

  • De Little, D. W., and Madden, J. L. 1975. Host preference in the Tasmanian eucalypt defoliating paropsini (Coleoptera: Chrysomelidae) with particular reference to Chrysophtharta bimaculata (Oliver) and Chrysophtharta agricola (Chapuis). J. Aust. Entomol. Soc. 14:387–394.

    Article  Google Scholar 

  • Duffy, M. P., Nahrung, H. F., Lawson, S. A., and Clarke, A. R. 2008. Direct and indirect effects of egg parasitism by Neopolycystus Girault sp. (Hymenoptera: Pteromalidae) on Paropsis atomaria Olivier (Coleoptera: Chrysomelidae). Aust. J. Entomol. 47:195–202.

    Article  Google Scholar 

  • Dungey, H. S., and Potts, B. M. 2003. Eucalypt hybrid susceptibility to Gonipterus scutellatus (Coleoptera: Curculionidae). Aust. Ecol. 28:70–74.

    Article  Google Scholar 

  • Dunlop, P. J., Bignell, C. M., Brooker, M. I. H., Brophy, J. J., and Hibbert, D. B. 1999. Use of gas chromatograms of essential leaf oils to compare eight taxa of genus Angophora (Myrtaceae): possible relationships to the genus Eucalyptus. Biochem. Systemat. Ecol. 27:815–830.

    Article  CAS  Google Scholar 

  • Edwards, P. B., Wanjura, W. J., and Brown, W. V. 1993. Selective herbivory by Christmas beetles in response to intraspecific variation in Eucalyptus. Oecologia. 95:551–557.

    Google Scholar 

  • Floate, K. D., and Whitham, T. G. 1994. Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can. J. Bot. 73:1–13.

    Article  Google Scholar 

  • Fox, L. R., and Macauley, B. J. 1977. Insect grazing on Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia. 29:145–162.

    Google Scholar 

  • Fritz, R. S., Moulia, C., and Newcombe, G. 1999. Resistance of hybrid plants and animals to herbivores, pathogens and parasites. Annu. Rev. Ecol. Systemat. 30:365–391.

    Google Scholar 

  • Griffin, A. R., Burgess, I. P., and Wolf, L. 1988. Patterns of natural and manipulated hybridization in the genus Eucalyptus L’Herit: a review. Aust. J. Bot. 36:41–66.

    Article  Google Scholar 

  • Hallgren, P., Ikonen, A., Hjalten, J., and Roininen, H. 2003. Inheritance patterns of phenolics in F1, F2 and back-cross hybrids of willows: implications for herbivore responses to hybrid plants. J. Chem. Ecol. 29:1143–1158.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, R. A., Morelli, T. L., and Wright, P. C. 2006. Volatile components of lemur scent secretions vary throughout the year. Amer. J. Primatol. 68:1202–1207.

    Article  CAS  Google Scholar 

  • Henery, M. L., Henson, M., Wallis, I. R., Stone, C., and Foley, W. J. 2008. Predicting crown damage to Eucalyptus grandis by Paropsis atomaria with direct and indirect measures of leaf composition. For. Ecol. Manage. 255:3642–3651.

    Article  Google Scholar 

  • Jones, T. H., Potts, B. M., Vaillancourt, R. E., and Davies, N. W. 2002. Genetic resistance of Eucalyptus globulus to autumn gum moth defoliation and the role of cuticular waxes. Can. J. For. Res. 32:1961–1969.

    Article  CAS  Google Scholar 

  • Jordan, G. J., Potts, B. M., and Clarke, A. R. 2002. Susceptibility of Eucalyptus globulus ssp. globulus to sawfly (Perga affinis ssp. insularis) attack and its potnetial impact on plantation productivity. For. Ecol. Manage. 160:189–199.

    Article  Google Scholar 

  • Kaplan, E. L., and Meier, P. 1958. Non-parametric estimation from incomplete observations. J. Amer. Stat. Assoc. 53:457–481.

    Article  Google Scholar 

  • Keszei, A., Brubaker, C. L., and Foley, W. J. 2008. A molecular perspective on terpene variation in Australian Myrtaceae. Aust. J. Bot. 56:197–213.

    Article  CAS  Google Scholar 

  • Kitamura, M., Nakamura, T., Hattori, K., Ishida, T. A., Shibita, S., Sato, H., and Kimura, M. T. 2007. Among-tree variation in leaf trits and herbivore attacks in a deciduous oak, Quercus dentata. Scan. J. For. Res. 22:211–218.

    Article  Google Scholar 

  • Ladiges, P. Y., and Udovicic, F. 2000. Comment on a new classification of the Eucalypts. Aust. Syst. Bot. 13:149–152.

    Article  Google Scholar 

  • Larsson, J., and Ohmart, C. P. 1988. Leaf age and performance of the leaf beetle Paropsis atomaria. Ecol. Entomol. 13:19–24.

    Article  Google Scholar 

  • Lee, D. 2007. Achievements in forest tree genetic improvement in Australia and New Zealand 2: Development of Corymbia species and hybrids for plantations in eastern Australia. Aust. For. 70:11–16.

    Google Scholar 

  • Lee, D., Huth, J. R., Brawner, J. T., and DICKINSON, G. R. in press. Comparative performance of Corymbia hybrids and parental species in subtropical Queensland and implications for breeding and deployment. Silv. Genet.

  • Miller, D. R. 2007. Limonene: Attractant kairomone for white pine cone beetles (Coleoptera : Scolytidae) in an eastern white pine seed orchard in western North Carolina. J. Econ. Entomol. 100:815–822.

    Article  PubMed  CAS  Google Scholar 

  • Nahrung, H. F. 2006. Paropsine beetles (Coleoptera: Chrysomelidae) in south-eastern Queensland hardwood plantations: Identifying potential pest species. Aust. For. 69:270–274.

    Google Scholar 

  • Nahrung, H. F., and Allen, G. R. 2003. Intra-plant host selection, oviposition preference and larval survival of Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae: Paropsini) between foliage types of a heterophyllous host. Agric. For. Entomol. 5:155–162.

    Article  Google Scholar 

  • Nahrung, H. F., Dunstan, P. K., and Allen, G. R. 2001. Larval gregariousness and neonate establishment of the eucalypt-feeding beetle Chrysophtharta agricola (Coleoptera: Chrysomelidae: Paropsini). Oikos. 94:358–364.

    Article  Google Scholar 

  • Nahrung, H. F., Schutze, M. K., Clarke, A. R., Duffy, M. P., Dunlop, E. A., and Lawson, S. A. 2008. Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. For. Ecol. Manage. 255:3515–3523.

    Article  Google Scholar 

  • O’reilly-Wapstra, J. M., Potts, B. M., Mcarthur, C., Davies, N. W., and Tilyard, P. 2005. Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in a Eucalyptus species. J. Chem. Ecol. 31:519–537.

    Article  PubMed  Google Scholar 

  • Ochieng, J. W., Shepherd, M., Baverstock, P. R., Nikles, G., Lee, D. J., and Henry, R. J. 2008. Genetic variation within two sympatric spotted gum eucalypts exceeds between taxa variation. Silv. Genet. 57:249–256.

    Google Scholar 

  • Ochieng, J. W., Henry, R. J., Baverstock, P. R., Steane, D. A., and Shepherd, M. 2007a. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Mol. Phylogenet. Evol. 44:752–764.

    Article  CAS  Google Scholar 

  • Ochieng, J. W., Steane, D. A., Ladiges, P. Y., Baverstock, P. R., Henry, R. J., and Shepherd, M. 2007b. Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genet. Molec. Biol. 30: 1125–1134.

    CAS  Google Scholar 

  • Ohmart, C. P. 1991. Role of food quality in the popluation dymanics of chrysomelid beetles feeding on Eucalyptus. For. Ecol. Manage. 39:35–46.

    Article  Google Scholar 

  • Ohmart, C. P., and Larsson, S. 1989. Evidence for absorption of eucalypt essential oils by Paropsis atomaria Oliver (Coleoptera: Chrysomelidae). J. Aust. Entomol. Soc. 28:201–205.

    Article  Google Scholar 

  • Ohmart, C. P., Thomas, J. R., and Stewart, L. G. 1987. Nitrogen, leaf toughness and the population dynamics of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae)—a hypothesis. J. Aust. Entomol. Soc. 26:203–207.

    Article  Google Scholar 

  • Panasiuk, O. 1984. Response of Colorado potato beetles, Leptinotarsa decemlineata (Say), to volatile components of tansy, Tanacetum vulgare. J. Chem. Ecol. 10:1325–1333.

    Article  CAS  Google Scholar 

  • Potts, B. M., and Dungey, H. S. 2004. Interspecific hybridisation of Eucalyptus: key issues for breeders and geneticists. New For. 27:115–138.

    Google Scholar 

  • Rapley, L. P., Allen, G. R., and Potts, B. M. 2004a. Genetic variation in Eucalyptus globulus in relation to susceptibility from attack by the southern eucalypt leaf beetle, Chrysophtharta agricola. Aust. J. Bot. 52:747–756.

    Article  Google Scholar 

  • Rapley, L. P., Allen, G. R., and Potts, B. M. 2004b. Genetic variation of Eucalyptus globulus in relation to autumn gum moth Mnesampela privata (Lepidoptera: Geometridae) oviposition preference. For. Ecol. Manage. 194:169–175.

    Article  Google Scholar 

  • Rapley, L. P., Allen, G. R., and Potts, B. M. 2004c. Susceptibility of Eucalyptus globulus to Mnesampela privata defoliation in relation to a specific foliar wax compound. Chemoecol. 14:157–163.

    CAS  Google Scholar 

  • Raymond, C. A. 1995. Genetic variation in Eucalyptus regnans and Eucalyptus nitens for levels of observed defoliation caused by the Eucalyptus leaf beetle, Chrysophtharta bimaculata Olivier, in Tasmania. For. Ecol. Manage. 72:21–29.

    Article  Google Scholar 

  • Scott, S. L., Mcarthur, C., Potts, B. M., and Joyce, K. 2002. Possum browsing—the downside to a eucalypt hybrid developed for frost tolerance in plantation forestry. For. Ecol. Manage. 157:231–245.

    Article  Google Scholar 

  • Shepherd, M., Kasem, S., Ablett, G., Ochieng, J., and Crawford, A. 2008. Genetic structuring in the spotted gum complex (genus Corymbia section Politaria). Aust. Systemat. Bot. 21:15–25.

    Article  CAS  Google Scholar 

  • Steinbauer, M. J. 2001. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus): implications for insect defoliation. Aust. For. 64:32–37.

    Google Scholar 

  • Steinbauer, M. J., Schiestl, F. P., and Davies, N. W. 2004. Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different ages. J. Chem. Ecol. 30:1117–1142.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, S. Y. 1994. Levels of herbivory and parasitism in host hybrid zones. Trends Ecol. Evol. 9:209–214.

    Article  Google Scholar 

  • Thompson, J. N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47:3–14.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr Simon Lawson (QPIF DEEDI) for field assistance and comments on the manuscript, Dr Chris Moore (QPIF DEEDI) for preliminary analyses of foliage and helpful discussions, Drs Martin Steinbauer (La Trobe University, Melbourne) and Manon Griffiths (QPIF DEEDI) for ms comments; Dr David Lee (QPIF DEEDI) for access to field trials. This work was funded with a grant from the Queensland Department of Tourism, Regional Development and Industry, Forestry Plantations Queensland, Forest Enterprises Australia Ltd. and Integrated Tree Cropping Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Andrew Hayes.

Appendices

Appendix 1

Retention times, kovats retention index and tentative identities of components detected in hexane extracts of Corymbia leaves, and the percentage of replicates of each taxon in which the component was identified. Unidentified components are designated “?”

Ret. Time (min)

Kovats Index

Name

CCV

CT × CCV

CT

3.566

901

(E)-2-hexenal

0

0

100

3.614

905

m-xylene

100

100

0

4.339

956

α-pinene

100

100

100

5.064

999

β-pinene

80

100

100

5.398

1023

1,2,3-trimethyl benzene

80

100

100

5.87

1054

?

60

0

0

5.93

1058

limonene

80

100

0

6.146

1071

3-carene

20

100

100

6.297

1080

1,8-cineole

0

60

0

6.349

1083

?

60

0

0

6.788

1111

?

100

20

40

7.703

1176

?

20

40

0

7.974

1193

?

40

0

0

8.483

1232

?

60

0

0

9.109

1278

?

20

0

0

9.589

1314

hydrocarbon

20

100

100

9.937

1342

methyl naphthalene

80

100

100

11.109

1437

cycloisolongifolene

40

80

0

11.232

1447

4,11,11-trimethyl-8-methylene

bicyclo[7,2,0]undec-4-ene

100

100

100

11.443

1465

alloaromadendrene

40

60

0

11.604

1478

α-cubebene

0

60

0

12.12

1523

β-patchoulene

0

20

0

12.16

1527

sesquiterpene

100

40

80

12.537

1561

1,2,3,4,6,8a-hexahydro-1-isopropyl-4,7-dimethylnaphthalene

80

80

0

12.846

1588

elemol

100

0

0

13.46

1646

sesquiterpene

100

100

100

13.622

1662

1,2,6-hexanetriol

60

80

80

13.737

1673

?

80

40

0

13.83

1681

?

0

20

0

13.94

1691

?

80

40

0

13.975

1695

?

80

40

0.

14.143

1711

sesquiterpene

100

0

0

14.207

1718

?

0

80

60

16.042

1906

oxygenated hydrocarbon

80

100

100

16.942

2003

? (N-containing)

60

100

100

17.377

2055

octadecanol

0

20

100

18.517

2192

? (N-containing)

0

40

80

19.171

2275

?

80

20

20

20.664

2472

?

0

40

0

20.713

2478

hydrocarbon

60

100

100

20.851

2496

hydrocarbon

60

100

100

20.885

2501

hydrocarbon

0

20

80

21.92

2633

?

0

100

100

22.253

2674

hydrocarbon

20

100

80

22.385

2690

hydrocarbon

0

100

100

23.252

2794

hydrocarbon

60

100

100

23.315

2802

hydrocarbon

40

80

100

23.524

2826

hydrocarbon

80

100

100

23.74

2851

?

0

20

80

23.834

2862

?

40

0

0

24.519

2939

hydrocarbon

100

100

100

24.833

2974

?

20

0

0

24.868

2978

?

20

0

0

25.006

2993

?

20

20

0

26.149

3115

eicosane

100

100

100

28.568

3357

?

0

0

20

28.896

3388

?

20

0

0

28.916

3390

?

20

0

0

Appendix 2

Mean ± s.e. percentage area under the peak for compounds (identified by retention time) used to distinguish between pairs of taxa (A) CCV vs. CT; (B) CCV vs. CT × CCV; (C) CT vs. CT × CCV

a

   

Retention time

Mean % area-CCV

Mean % area-CT

% contribution to group dissimilarity

12.846

32.3 ± 7.89

0

6.68

3.566

0

5.51 ± 1.07

4.34

23.252

1.30 ± 1.10

16.6 ± 1.62

4.17

14.143

4.34 ± 1.07

0

4.02

5.93

12.7 ± 5.54

0

3.81

24.519

3.37 ± 2.07

33.8 ± 2.47

3.59

26.149

1.50 ± 0.61

25.0 ± 2.02

3.47

3.614

1.93 ± 1.14

0

2.98

22.385

0

1.03 ± 0.18

2.87

23.524

0.43 ± 0.19

5.14 ± 0.75

2.49

4.339

22.5 ± 8.18

3.33 ± 1.24

2.42

13.46

5.60 ± 1.20

0.21 ± 0.05

2.39

17.377

0

0.44 ± 0.10

2.28

21.920

0

0.38 ± 0.03

2.25

19.171

1.14 ± 0.72

0.01 ± 0.01

2.18

6.146

1.14 ± 1.14

0.34 ± 0.11

2.15

b

   

Retention time

Mean % area-CCV

Mean % area-CT × CCV

% contribution to group dissimilarity

12.846

32.3 ± 7.89

0

7.70

14.143

4.34 ± 1.07

0

4.64

23.252

1.30 ± 1.10

10.5 ± 0.65

4.07

5.93

12.7 ± 5.54

0.56 ± 0.03

3.29

6.146

1.14 ± 1.14

1.49 ± 0.38

3.17

20.851

0.15 ± 0.06

3.02 ± 0.35

3.01

24.519

3.37 ± 2.07

18.1 ± 1.70

2.97

20.713

0.17 ± 0.07

2.75 ± 0.28

2.86

22.385

0

0.53 ± 0.14

2.76

21.923

0

0.45 ± 0.16

2.71

19.171

1.14 ± 0.72

0.04 ± 0.04

2.45

22.253

0.06 ± 0.06

0.57 ± 0.08

2.43

26.149

1.50 ± 0.61

9.34 ± 0.53

2.40

23.524

0.43 ± 0.19

3.32 ± 0.31

2.36

6.788

0.53 ± 0.13

0.03 ± 0.03

2.37

8.483

1.24 ± 0.53

0

2.28

c

   

Retention time

Mean % area-CT

Mean % area-CT × CCV

% contribution to group dissimilarity

3.566

5.51 ± 1.07

0

7.72

3.614

0

4.08 ± 0.59

7.18

4.339

3.33 ± 1.24

30.5 ± 1.24

5.46

5.93

0

0.56 ± 0.03

4.42

13.46

0.21 ± 0.05

4.94 ± 0.75

4.14

17.377

0.44 ± 0.10

0.11 ± 0.11

3.37

23.74

0.39 ± 0.17

0.14 ± 0.14

2.89

12.537

0

0.21 ± 0.07

2.84

20.851

0.38 ± 0.09

3.02 ± 0.35

2.76

20.885

0.24 ± 0.07

0.13 ± 0.13

2.70

20.713

0.39 ± 0.11

2.75 ± 0.28

2.63

11.109

0

0.13 ± 0.05

2.51

26.149

25.04 ± 2.02

9.34 ± 0.53

2.48

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahrung, H.F., Waugh, R. & Andrew Hayes, R. Corymbia Species and Hybrids: Chemical and Physical Foliar Attributes and Implications for Herbivory. J Chem Ecol 35, 1043–1053 (2009). https://doi.org/10.1007/s10886-009-9682-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9682-9

Keywords

Navigation