Skip to main content
Log in

Modifying the Alkylglucosinolate Profile in Arabidopsis thaliana Alters the Tritrophic Interaction with the Herbivore Brevicoryne brassicae and Parasitoid Diaeretiella rapae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana was used as an experimental model plant to investigate a tritrophic interaction between the plant, a specialist aphid herbivore, Brevicoryne brassicae, and its natural enemy, the parasitoid Diaeretiella rapae. The A. thaliana ecotype Col-5 was transformed with a functional 2-oxoglutarate dependent dioxygenase (BniGSL-ALK) that converts 3-methylsulfinylpropylglucosinolate and 4-methylsulfinylbutylglucosinolate to 2-propenylglucosinolate and 3-butenylglucosinolate, respectively. This transformation results in a change in the glucosinolate hydrolysis profile where 3-butenylisothiocyanate, 2-propenylisothiocyanate and 5-vinyloxazolidine-2-thione are produced in contrast to the wild-type plant where 4-methylsulfinylbutylisothiocyanate is the main product. Performance of B. brassicae was affected negatively by transforming Col-5 with BniGSL-ALK in terms of mean relative growth rates. In a series of behavioral bioassays, naïve D. rapae females were able to discriminate between B. brassicae infested and uninfested Col-5 plants transformed with BniGSL-ALK, with parasitoids showing a preference for B. brassicae infested plants. By contrast, naïve D. rapae females were unable to discriminate between aphid infested and uninfested Col-5 plants. Subsequent air entrainments of B. brassicae infested Col-5 plants transformed with BniGSL-ALK further confirmed the presence of 3-butenylisothiocyanate in the headspace. By contrast, no glucosinolate hydrolysis products were recorded from similarly infested Col-5 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • ALIABADI, A., RENWICK, J. A. A., and WHITMAN, D. W. 2002. Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J. Chem. Ecol. 28:1749–1762.

    Article  PubMed  CAS  Google Scholar 

  • BARKER, J. E., POPPY, G. M., and PAYNE, C. C. 2007. Suitability of Arabidopsis thaliana as a model for host plant-Plutella xylostella-Cotesia plutellae interactions. Entomol. Exp. Appl. 122:17–26.

    Article  Google Scholar 

  • BARTH, C. and JANDER, G. 2006. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 46:549–562.

    Article  PubMed  CAS  Google Scholar 

  • BLANDE, J. D., PICKETT, J. A., and POPPY, G. M. 2004. Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J. Chem. Ecol. 30:1781–1795.

    Article  PubMed  CAS  Google Scholar 

  • BLANDE, J. D., PICKETT, J. A., and POPPY, G. M. 2007. A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J. Chem. Ecol. 33:767–779.

    Article  PubMed  CAS  Google Scholar 

  • BONES, A. M. and ROSSITER, J. T. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiol. Plantarum 97:194–208.

    Article  CAS  Google Scholar 

  • BONES, A. M. and ROSSITER, J. T. 2006. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry. 67:1053–67.

    Article  PubMed  CAS  Google Scholar 

  • BRADBURNE, R. P. and MITHEN, R. 2000. Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proc. R. Soc. B-Biol. Sci. 267:89–95.

    Article  CAS  Google Scholar 

  • BRIDGES, M., JONES, A. M. E., BONES, A. M., HODGSON, C., COLE, R., BARTLET, E., WALLSGROVE, R., KARAPAPA, V. K., WATTS, N., and ROSSITER, J. T. 2002. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc. Royal Soci. London, Series B: Biological Sciences 269:187–191.

    Article  CAS  Google Scholar 

  • BUROW, M., MULLER, R., GERSHENZON, J., and WITTSTOCK, U. 2006. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32:2333–2349.

    Article  PubMed  CAS  Google Scholar 

  • CASTLE, S. J. and BERGER, P. H. 1993. Rates of growth and increase of Myzus persicae on virus-infected potatoes according to type of virus-vector relationship. Entomol. Exp. Appl. 69:51–60.

    Article  Google Scholar 

  • CLOUGH, S. J. and BENT, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743.

    Article  PubMed  CAS  Google Scholar 

  • COLE, R. A. 1976. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolates in Cruciferae. Phytochemistry 15:759–62.

    Article  CAS  Google Scholar 

  • DAWSON, G. W., GRIFFITHS, D. C., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1987. Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae). J. Chem. Ecol. 13:1663–1671.

    Article  CAS  Google Scholar 

  • DE TORRES ZABALA, M., GRANT, M., BONES, A. M., BENNETT, R., LIM YIN, S., KISSEN, R., and ROSSITER, J. T. 2005. Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Phytochemistry 66:859–67

    Article  Google Scholar 

  • DE VOS, M., KIM, J. H., and JANDER, G. 2007. Biochemistry and molecular biology of Arabidopsis-aphid interactions. BioEssays 29:871–883

    Article  PubMed  Google Scholar 

  • DU, Y. J., POPPY, G. M. ,and POWELL, W. 1996. Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J. Chem. Ecol. 22:1591–1605.

    Article  CAS  Google Scholar 

  • EDWARDS, K., JOHNSTONE, C. and THOMPSON, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl. Acids Res. 19:1349–1349.

    Article  PubMed  CAS  Google Scholar 

  • FRANCIS, F., LOGNAY, G., WATHELET, J. P., and HAUBRUGE, E. 2001. Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J. Chem. Ecol. 7:243–256.

    Article  Google Scholar 

  • GIRLING, R. D., HASSALL, M., TURNER, J. G., and POPPY, G. M. 2006. Behavioural responses of the aphid parasitoid Diaeretiella rapae to volatiles from Arabidopsis thaliana induced by Myzus persicae. Entomol. Exp. Appl. 120:1–9.

    Article  Google Scholar 

  • HALKIER, B. A. and GERSHENZON, J. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303–333.

    Article  PubMed  CAS  Google Scholar 

  • HANSEN, B. G., KERWIN, R. E., OBER, J. A., LAMBRIX, V. M., MITCHELL-OLDS, T., GERSHENZON, J., HALKIER, B. A., and KLIEBENSTEIN, D. J. 2008. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol.148:2096–2108.

    Article  PubMed  CAS  Google Scholar 

  • HEANEY, R. K. and FENWICK, R. G. 1993. Methods for glucosinolate analysis. Methods in Plant Biochemistry 8 (Alkaloids and Sulphur Compounds): pp. 531–50.

  • HUSEBYE, H., ARZT, S., BURMEISTER, W. P., HAERTEL, F. V., BRANDT, A., ROSSITER, J. T., and BONES, A. M. 2005. Crystal structure at 1.1 Å. resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to β-glucosidases. Insect Biochem. Mol. Biol. 35:1311–1320.

    CAS  Google Scholar 

  • JANDER, G., CUI, J. P., NHAN, B., PIERCE, N. E., and AUSUBEL, F. M. 2001. The TASTY locus on chromosome 1 of Arabidopsis affects feeding of the insect herbivore Trichoplusia ni. Plant Physiol. 126:890–898.

    Article  PubMed  CAS  Google Scholar 

  • JONES, A. M. E., BRIDGES, M., BONES, A. M., COLE, R., and ROSSITER, J. T. 2001. Purification and characterization of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem. Mol. Biol. 31:1–5.

  • JONES, A. M. E., WINGE, P., BONES, A. M., COLE, R., and ROSSITER, J. T. 2002. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem. Mol. Biol. 32:275–284.

  • KAPPERS, I. F., AHARONI, A., VAN HERPEN, T., LUCKERHOFF, L. L. P., DICKE, M., and BOUWMEESTER, H. J. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • KAZANA, E., POPE, T. W., TIBBLES, L., BRIDGES, M., PICKETT, J. A., BONES, A. M., POWELL, G., and ROSSITER, J. T. 2007. The cabbage aphid: a walking mustard oil bomb. Proc. R. Soc. B-Biol. Sci. 274:2271–2277.

    Article  CAS  Google Scholar 

  • KELLY, P. J., BONES, A., and ROSSITER, J. T. 1998. Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206:370–377.

    Article  PubMed  CAS  Google Scholar 

  • KIM, J. H., LEE, B. W., SCHROEDER, F. C., and JANDER, G. 2008. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J. 54:1015–1026.

    Article  PubMed  CAS  Google Scholar 

  • KLIEBENSTEIN, D. J., KROYMANN, J., BROWN, P., FIGUTH, A., PEDERSEN, D., GERSHENZON, J., and MITCHELL-OLDS, T. 2001a. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126:811–825.

    Article  CAS  Google Scholar 

  • KLIEBENSTEIN, D. J., LAMBRIX, V. M., REICHELT, M., GERSHENZON, J., and MITCHELL-OLDS, T. 2001b. Gene duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–693.

    Article  CAS  Google Scholar 

  • KLIEBENSTEIN, D. J., KROYMANN, J., and MITCHELL-OLDS, T. 2005a. The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr. Opin. Plant Biol. 8:264–271.

    Article  CAS  Google Scholar 

  • KLIEBENSTEIN, D. J., ROWE, H. C. and DENBY, K. J. 2005b. Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J. 44:25–36.

    Article  CAS  Google Scholar 

  • KUSNIERCZYK, A., WINGE, P., MIDELFART, H., ARMBRUSTER, W. S., ROSSITER, J. T., and BONES, A. M. 2007. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. J. Exp. Bot. 58:2537–2552.

    CAS  Google Scholar 

  • LAMBRIX, V., REICHELT, M., MITCHELL-OLDS, T., KLIEBENSTEIN, D. J., and GERSHENZON, J. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807.

    Article  PubMed  CAS  Google Scholar 

  • LEVY, M., WANG, Q. M., KASPI, R., PARRELLA, M. P., and ABEL, S. 2005. Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J. 43:79–96.

    Article  PubMed  CAS  Google Scholar 

  • LI, G. and QUIROS, C. F. 2003. In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor. Appl. Genet. 106:1116–1121.

    PubMed  CAS  Google Scholar 

  • LOGEMANN, J., SCHELL, J., and WILLMITZER, L. 1987. Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163:16–20.

    Article  PubMed  CAS  Google Scholar 

  • MEWIS, I., APPEL, H. M., HOM, A., RAINA, R., and SCHULTZ, J. C. 2005. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol. 138:1149–1162.

    Article  PubMed  CAS  Google Scholar 

  • MEWIS, I., TOKUHISA, J. G., SCHULTZ, J. C., APPEL, H. M., ULRICHS, C., and GERSHENZON, J. 2006. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462.

    Article  PubMed  CAS  Google Scholar 

  • MULLER, C., AGERBIRK, N., OLSEN, C. E., BOEVE, J. L., SCHAFFNER, U., and BRAKEFIELD, P. M. 2001. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27:2505–2516.

    Article  PubMed  CAS  Google Scholar 

  • NIELSEN, J. K., HANSEN, M. L., AGERBIRK, N., PETERSEN, B. L., and HALKIER, B. A. 2001. Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile. Chemoecology 11:75–83.

    Article  CAS  Google Scholar 

  • NOTTINGHAM, S. F., HARDIE, J., DAWSON, G. W., HICK, A. J., PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1991. Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J. Chem. Ecol.17:1231–1242.

    Article  CAS  Google Scholar 

  • RATZKA, A., VOGEL, H., KLIEBENSTEIN, D. J., MITCHELL-OLDS, T., and KROYMANN, J. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99:11223–11228.

    Article  PubMed  CAS  Google Scholar 

  • READ, D. P., FEENY, P. P., and ROOT, R. B. 1970. Habitat selection by aphid parasite Diaeretiella rapae (Hymenoptera:Braconidae) and hyperparasite Charips brassicae (Hymenoptera:Cynipidae). Canad. Entomologist 102:1567–1578.

  • REED, H. C., TAN, S. H., HAAPANEN, K., KILLMON, M., REED, D. K., and ELLIOTT, N. C. 1995. Olfactory responses of the parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) to odor of plants, aphids, and plant-aphid complexes. J. Chem. Ecol. 21:407–418.

    Article  CAS  Google Scholar 

  • ROSSITER, J. T., JAMES, D. C. and ATKINS, N. 1990. Biosynthesis of 2-hydroxy-3-butenylglucosinolate and 3-butenylglucosinolate in Brassica napus. Phytochemistry 29:2509–2512.

    Article  CAS  Google Scholar 

  • SAMBROOK, J., FRITSCH, E. F., and MANIATIS, T. 1989. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • SPENCER, G. F. and DAXENBICHLER, M. E. 1980. Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates. J. Sci. Food Agric. 31:359–367.

    CAS  Google Scholar 

  • VAN POECKE, R. M. P. and DICKE, M. 2004. Indirect defence of plants against herbivores: Using Arabidopsis thaliana as a model plant. Plant Biol. 6:387–401

    Article  PubMed  Google Scholar 

  • VAUGHN, T. T., ANTOLIN, M. F., and BJOSTAD, L. B. 1996. Behavioral and physiological responses of Diaeretiella rapae to semiochemicals. Entomol. Exp. Appl. 78:187–196.

    Article  CAS  Google Scholar 

  • WENTZELL, A. M., ROWE, H. C., HANSEN, B. G., TICCONI, C., HALKIER, B. A., and KLIEBENSTEIN, D. J. 2007. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PloS Genet. 3:1687–1701.

    Article  PubMed  CAS  Google Scholar 

  • WINK, M. 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75:225–233.

    Article  CAS  Google Scholar 

  • WITTSTOCK, U., AGERBIRK, N., STAUBER, E. J., OLSEN, C. E., HIPPLER, M., MITCHELL-OLDS, T., GERSHENSON, J., and VOGEL, H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA 101:4859–4864.

    Article  PubMed  CAS  Google Scholar 

  • WITTSTOCK, U., KLIEBENSTEIN, D. J., LAMBRIX, V., REICHELT, M., and GERSHENZON, J. 2003. Glucosinolate hydrolysis and its impact on generalist and specialist aphid herbivores. pp 101–125 in: Romeo JT, editor. Integrative Phytochemistry: from Ethnobotany to Molecular Ecology. Oxford: Pergamon.

  • ZHANG, Z. Y., OBER, J. A., and KLIEBENSTEIN, D. J. 2006. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the BBSRC (Biotechnology and Biological Sciences Research Council) (grant 32/P17268). Rothamsted receives grant-aided support from the BBSRC. We thank Wendy Byrne and Valerie Elliot for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Rossiter.

Additional information

Ralph Kissen and Tom W. Pope contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kissen, R., Pope, T.W., Grant, M. et al. Modifying the Alkylglucosinolate Profile in Arabidopsis thaliana Alters the Tritrophic Interaction with the Herbivore Brevicoryne brassicae and Parasitoid Diaeretiella rapae . J Chem Ecol 35, 958–969 (2009). https://doi.org/10.1007/s10886-009-9677-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9677-6

Keywords