Skip to main content
Log in

Detection and Discrimination of Mixed Odor Strands in Overlapping Plumes Using an Insect-Antenna-Based Chemosensor System

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Olfactory signals, a major means of communication in insects, travel in the form of turbulent odor plumes. In terrestrial environments, an odor blend emitted from a single point source exists in every strand of the plume, whereas, in confluent plumes from two different odor sources, the strands have some chance of being coincident and comprising a new third odor in those strands. Insects have the ability to detect and interpret necessary olfactory information from individual filamentous odor strands in complex multifilament odor plumes. However, behaviorists have had no way to measure the stimulus situations they are presenting to their temporally acute insect subjects when performing Y-tube olfactometer or confluent pheromone plume wind tunnel assays. We have successfully measured the degree of plume-strand mixing in confluent plumes in a wind tunnel by using a multichannel insect-antenna-based chemosensor. A PC-based computer algorithm to analyze antennal signals from the probe portion of the system performed real-time signal processing and, following a short training session, classified individual odorant/mixture strands at sub-second temporal resolution and a few tens of millimeters of spatial resolution. In our studies, the chemosensor classified a higher frequency of strands of two different odorants emitted from two closely spaced filter papers as being “mixed” when the sources were located only 1 or 2 cm apart than when the sources were 5 or 10 cm apart. These experiments demonstrate the chemosensor’s potential to be used for measuring odor stimulus situations in more complex multiple-plume environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angioy, A. M., Desogus, A., Barbarossa, I. T., Anderson, P., and Hansson, B. S. 2003. Extreme sensitivity in an olfactory system. Chem. Senses 28:279–284.

    Article  PubMed  Google Scholar 

  • Baker, T. C., and Haynes, K. F. 1989. Field and laboratory electroantennographic measurements of pheromone plume structure correlated with oriental fruit moth behaviour. Physiol. Entomol. 14:1–12.

    Article  Google Scholar 

  • Baker, T. C., Fadamiro, H. Y., and Cossé, A. A. 1998. Moth uses fine tuning for odour resolution. Nature 393:530.

    Article  CAS  Google Scholar 

  • Bau, J., Justus, K. A., and Cardé, R. T. 2002. Antennal resolution of pulsed pheromone plumes in three moth species. J. Insect Physiol. 48:433–442.

    Article  PubMed  CAS  Google Scholar 

  • Bau, J., Justus, K. A., Loudon, C., and Cardé, R. T. 2005. Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem. Senses 30:771–780.

    Article  PubMed  Google Scholar 

  • Drake, M. A., Gerald, P. D., Kleinhenz, J. P., and Harper, W. J. 2003. Application of an electronic nose to correlate with descriptive sensory analysis of aged cheddar cheese. Lebensm. Wiss Technol. Food 36:13–20.

    Article  CAS  Google Scholar 

  • Fadamiro, H. Y., Cossé, A. A., and Baker, T. C. 1999. Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea. J. Comp. Physiol. A 185:131–141.

    Article  Google Scholar 

  • Hardie, J., Visser, J. H., and Piron, P. G. M. 1994. Perception of volatiles associated with sex and food by different adult forms of the black bean aphid, Aphis fabae. Physiol. Entomol. 19:278–284.

    Article  CAS  Google Scholar 

  • Hetling, J. R., Myrick, A. J., Park, K. C., and Baker, T. C. 2003. Odor discrimination using a hybrid-device olfactory biosensor, pp. 146–149, in Proceedings, First International IEEE EMBS Conference on Neural Engineering, Capri Island, Italy.

  • Huotari, M., and Mela, M. 1996. Blowfly olfactory biosensor’s sensitivity and specificity. Sensor Actuat. B Chem. 34:240–244.

    Article  Google Scholar 

  • Johnson, R. A., and Wichern, D. W. 1992. Applied Multivariate Statistical Analysis. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Justice, K. A., Cardé, R. T., and French, A. S. 2005. Dynamic properties of antennal responses to pheromone in two moth species. J. Neurophiol. 93:2233–2239.

    Article  Google Scholar 

  • Krishnan, T. 2001. Imperfect supervision in statistical pattern recognition, pp. 25–65, in S. P. Pal, and A. Pal (eds.). Pattern Recognition from Classical to Modern ApproachesWorld Scientific, River Edge.

    Google Scholar 

  • Kuwana, Y., and Shimoyama, I. 1998. A pheromone-guided mobile robot that behaves like a silkworm moth with living antennae as pheromone sensors. Int. J. Robot. Res. 17:924–933.

    Article  Google Scholar 

  • Kuwana, Y., Nagasawa, S., Shimoyama, I., and Kanzaki, R. 1999. Synthesis of the pheromone-orientated behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosens. Bioelectron. 14:195–202.

    Article  CAS  Google Scholar 

  • Liu, Y. B., and Haynes, K. F. 1992. Filamentous nature of pheromone plumes protects integrity of signal from background chemical noise in cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 18:299–307.

    Article  CAS  Google Scholar 

  • Myrick, A. J., Baker, T. C., Park, K. C., and Hetling, J. R. 2005. Bioelectric artificial nose using four-channel moth antenna biopotential recordings, pp. 313–316, in Proceedings, 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, USA.

  • Myrick, A. J., Park, K.-C., Hetling, J. R., and Baker, T. C. 2008. Real-time odor discrimination using a bioelectronic sensor array based on the insect electroantennogram. Bioinspir. Biomim. 3:046006.

  • Nikonov, A. A., and Leal, W. S. 2002. Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J. Chem. Ecol. 28:1075–1089.

    Article  PubMed  CAS  Google Scholar 

  • Ochieng, S. A., and Baker, T. C. 2002. Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J. Comp. Physiol. A 188:325–333.

    Article  CAS  Google Scholar 

  • Park, K. C., and Hardie, J. 1998. An improved aphid electroantennogram. J. Insect Physiol. 44:919–928.

    Article  PubMed  CAS  Google Scholar 

  • Park, K. C., Ochieng, S. A., Zhu, J., and Baker, T. C. 2002. Odor discrimination using insect electroantennogram responses from an insect antennal array. Chem. Senses 27:343–352.

    Article  PubMed  Google Scholar 

  • Rains, G. C., Tomberlin, J. K., D’Alessandro, M., and Lewis, W. J. 2004. Limits of volatile chemical detection of a parasitoid wasp, Microplitis croceipes, and an electronic nose: a comparative study. T. Am. Soc. Agric. Eng. 47:2145–2152.

    CAS  Google Scholar 

  • Sauer, A. E., Karg, G., Koch, U. T., Kramer, J. J. D., and Milli, R. 1992. A portable EAG system for the measurement of pheromone concentrations in the field. Chem. Senses 17:543–553.

    Article  CAS  Google Scholar 

  • Schaller, E., Bosset, J. O., and Escher, F. 1998. ‘Electronic noses’ and their application to food. Lebensm. Wiss. Technol. Food 31:305–316.

    Article  CAS  Google Scholar 

  • Schöning, M. J., Schütz, S., Riemer, A., Weißbecker, B., Steffen, A., Kordoš, P., Lüth, H., and Hummel, H. E. 1998. A BioFET on the basis of insect antennae. Sensor Actuat. B Chem. 47:234–237.

    Google Scholar 

  • Schöning, M. J., Schroth, P., and Schütz, S. 2000. The use of insect chemoreceptors for the assembly of biosensors based on semiconductor field-effect transistors. Electroanalysis 12:645–652.

    Article  Google Scholar 

  • Schroth, P., Schöning, M. J., Kordoš, P., Luth, H., Schütz, S., Weißbecker, B., and Hummel, H. E. 1999. Insect-based BioFets with improved signal characteristics. Biosens. Bioelectron. 14:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Schütz, S., Weißbecker, B., Koch, U. T., and Hummel, H. E. 1999. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens. Bioelectron. 14:221–228.

    Article  Google Scholar 

  • Theodoridis, S., and Koutroumbas, K. 1999. Pattern Recognition. Academic, San Diego.

    Google Scholar 

  • Todd, J., and Baker, T. C. 1999. Function of peripheral olfactory organs, pp. 67–96, in B. S. Hansson (ed.). Insect OlfactionSpringer, Berlin.

    Google Scholar 

  • van der Pers, J. N. C., and Minks, A. 1998. A portable electroantennogram sensor for routine measurements of pheromone concentrations in greenhouses. Entomol. Exp. Appl. 87:209–215.

    Article  Google Scholar 

  • van Giessen, W. A., Fescemyer, H. W., Burrows, P. M., Peterson, J. K., and Barnett, O. W. 1994. Quantification of electroantennogram responses of the primary rhinaria of Acyrthosiphon pisum (Harris) to C4–C8 primary alcohols and aldehydes. J. Chem. Ecol. 20:909–927.

    Article  CAS  Google Scholar 

  • Vickers, N. J. 2006. Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics. Chem. Senses 31:155–166.

    Article  PubMed  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1992. Male Heliothis virescens sustain upwind flight in response to experimentally pulsed filaments of their sex-pheromone. J. Insect Behav. 5:669–687.

    Article  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci. U. S. A. 91:5756–5760.

    Article  PubMed  CAS  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1997. Chemical communication in heliothine moths. VII. Correlation between diminished responses to point-source plumes and single filaments similarly tainted with a behavioral antagonist. J. Comp. Physiol. 180:523–536.

    Article  CAS  Google Scholar 

  • Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. Odour-plume dynamics influence the brain’s olfactory code. Nature 410:466–470.

    Article  PubMed  CAS  Google Scholar 

  • Visser, J. H., and Piron, P. G. M. 1997. Olfactory antennal responses to plant volatiles in apterous virginoparae of the vetch aphid Megoura viciae. Entomol. Exp. Appl. 77:37–46.

    Article  Google Scholar 

  • Visser, J. H., Piron, P. G. M., and Hardie, J. 1996. The aphids’ peripheral perception of plant volatiles. Entomol. Exp. Appl. 80:35–38.

    Article  CAS  Google Scholar 

  • Walt, D. R., Dickinson, T., White, J., Kauer, J., Johnson, S., Engelhardt, H., Sutter, J., and Jurs, P. 1998. Optical sensor arrays for odor recognition. Biosens. Bioelectron. 13:697–699.

    Article  PubMed  CAS  Google Scholar 

  • Witzgall, P., and Priesner, E. 1991. Wind tunnel study on an attraction inhibitor in male Coleophora laricella Hbn. (Lepidoptera: Coleophoridae). J. Chem. Ecol. 17:1355–1362.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the late Dr. Jan van der Pers of Syntech (Hilversum, The Netherlands) for his passionate devotion to developing wonderful research tools for insect olfaction and for providing a basis, through his lifelong research and technology development efforts, for understanding the rudiments of insect pheromone and host-odor olfaction. We also thank Bryan Banks, Penn State University, for rearing the test insects and Drs. Junwei Zhu and Samuel Ochieng for helpful comments related to earlier versions of this study. This research was funded initially by the Controlled Biological Systems Program of Defense Advanced Research Projects Agency (DARPA) and subsequently by the Office of Naval Research (ONR) and the Defense Threat Reduction Agency (DTRA), through grants to TCB at Iowa State University (DARPA) and at Penn State University (ONR Counter-IED Program; DTRA). This research was also supported by a Keystone Alliance grant from the State of Pennsylvania, through Penn State University. The authors gratefully acknowledge the funding support from these sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myrick, A.J., Park, K.C., Hetling, J.R. et al. Detection and Discrimination of Mixed Odor Strands in Overlapping Plumes Using an Insect-Antenna-Based Chemosensor System. J Chem Ecol 35, 118–130 (2009). https://doi.org/10.1007/s10886-008-9582-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9582-4

Keywords

Navigation