Skip to main content
Log in

Trade-Off Between Sensitivity and Specificity in the Cabbage Looper Moth Response to Sex Pheromone

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The evolution of male moth responses to pheromone blends may be constrained by a trade-off between two response traits: sensitivity and breadth of response. Population genetic simulations predict that if sensitivity and breadth of response are negatively correlated (i.e., a trade-off exists), then selection will favor males with narrow response phenotypes and high sensitivity. Although sensitivity–breadth of response trade-offs are generally assumed to exist and are implicit to the shape of male preference function, this study is the first to provide empirical support measuring behavior at the level of the individual. Previous studies with the cabbage looper, Trichoplusia ni, have documented the existence of a mutant pheromone strain. While mutant females produce a pheromone blend significantly different from wild-type females, mutant males respond equally to the wild-type and mutant pheromone blends. This study used wind tunnel bioassays to document that relative to wild-type males, mutant males had broader response profiles but lower pheromone sensitivity. While wild-type male responses were highest to the wild-type pheromone blend, mutant males did not discriminate among pheromone blends. These results are consistent with a trade-off between breadth of response and sensitivity. Pure wild-type and mutant lines were crossed and hybrid males assayed. Both hybrid types (maternal wild-type and maternal mutant hybrids) responded similarly. Hybrid males had response profiles similar to wild-type males and the reduced sensitivity observed in mutant males. These results suggest a possible hybrid disadvantage and a putative mechanism for reinforcement of male pheromone response traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison, J. D., and Cardé, R. T. 2006. Heritable variation in the sex pheromone of the almond moth, Cadra cautella. J. Chem. Ecol. 32:621–641.

    Article  PubMed  CAS  Google Scholar 

  • Allison, J. D., and Cardé, R. T. 2007. Bidirectional selection for novel pheromone blend ratios in the almond moth, Cadra cautella. J. Chem. Ecol. 33:2293–2307.

    Article  PubMed  CAS  Google Scholar 

  • Allison, J. D., and Cardé, R. T. 2008. Male pheromone blend preference function measured in choice and no-choice wind-tunnel trials with Cadra cautella. Anim. Behav. 75:259–266.

    Article  Google Scholar 

  • Baker, T. C., Meyer, W., and Roelofs, W. L. 1981. Sex-pheromone dosage and blend specificity of response by oriental fruit moth males. Entomol. Exp. Appl. 30:269–279.

    Article  CAS  Google Scholar 

  • Bentsen, C. L., Hunt, J., Jennions, M. D., and Brooks, R. 2006. Complex multivariate sexual selection on male acoustic signaling in a wild population of Teleogryllus commodus. Am. Nat. 167:E102–E116.

    Article  PubMed  Google Scholar 

  • Butlin, R. K. 1987. Speciation by reinforcement. Trends Ecol. Evol. 2:8–13.

    Article  Google Scholar 

  • Butlin, R. K., and Ritchie, M. G. 1989. Genetic coupling in mate recognition systems: what is the evidence? Biol. J. Linn. Soc. 37:237–246.

    Article  Google Scholar 

  • Butlin, R. K., and Trickett, A. J. 1997. Can population genetic simulations help to interpret pheromone evolution?, pp. 548–562, in R. T., Cardé, A. K., and Minks (eds.). Insect Pheromone Research: New Directions Chapman and Hall, New York.

    Google Scholar 

  • Cardé, R. T. 1986. The role of pheromones in reproductive isolation and speciation of insects, pp. 303–317, in M. D., and Huettel (eds.). Genetics of Invertebrate Behavior: Progress and ProspectsPlenum, New York.

    Google Scholar 

  • Cardé, R. T., and Charlton, R. E. 1984. Olfactory sexual communication in Lepidoptera: strategy, sensitivity and selectivity, pp. 241–265, in T. Lewis (ed.). Insect Communication Academic, London.

    Google Scholar 

  • Cardé, R. T., and Haynes, K. F. 2004. Structure of the pheromone communication channel in moths, pp. 283–332, in R. T., Cardé, K. F., and Haynes (eds.). Advances in Insect Chemical Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Collins, R. D., and Cardé, R. T. 1985. Variation in and heritability of aspects of pheromone production in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Ann. Entomol. Soc. Am. 78:229–234.

    CAS  Google Scholar 

  • Collins, R. D., and Cardé, R. T. 1989. Selection for altered pheromone-component ratios in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). J. Insect Behav. 2:609–621.

    Article  Google Scholar 

  • Collins, R. D., and Cardé, R. T. 1990. Selection for increased pheromone response in the male pink-bollworm, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Behav. Genet. 20:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Collins, R. D., Rosenblum, S. L., and Cardé, R. T. 1990. Selection for increased pheromone titre in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Physiol. Entomol. 15:141–147.

    Article  Google Scholar 

  • Evenden, M. L., and Haynes, K. F. 2001. Potential for the evolution of resistance to pheromone-based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Entomol. Exp. Appl. 100:131–134.

    Article  Google Scholar 

  • Evenden, M. L., Spohn, B. G., Moore, A. J., Preziosi, R. F., and Haynes, K. F. 2002. Inheritance and evolution of male response to sex pheromone in Trichoplusia ni (Lepidoptera: Noctuidae). Chemoecology 12:53–59.

    Article  CAS  Google Scholar 

  • Gemeno, C., Moore, A. J., Preziosi, R. F., and Haynes, K. F. 2001. Quantitative genetics of signal evolution: a comparison of the pheromonal signal of two populations of the cabbage looper, Trichoplusia ni. Behav. Genet. 31:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Groot, A. T., Horovitz, J. L., Hamilton, J., Santangelo, R. G., Schal, C., and Gould, F. 2006. Experimental evidence for interspecific directional selection on moth pheromone communication. Proc. Natl. Acad. Sci. U. S. A. 103:5858–5863.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, B. S., Löfstedt, C., and Roelofs, W. L. 1987. Inheritance of olfactory response to sex pheromone components in Ostrinia nubilalis. Naturwissenchaften 74:497–499.

    Article  CAS  Google Scholar 

  • Hansson, B. S., Löfstedt, C., and Foster, S. P. 1989. Z-linked inheritance of male olfactory response to sex pheromone components in two species of tortricid moths, Ctenopseustis obliquana and Ctenopseustis sp. Entomol. Exp. Appl. 53:137–145.

    Article  Google Scholar 

  • Haynes, K. F., and Hunt, R. E. 1990. A mutation in pheromonal communication system of cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 16:1249–1257.

    Article  CAS  Google Scholar 

  • Hunt, R. E., and Haynes, K. F. 1990. Periodicity in the quantity and blend ratios of pheromone components in glands and volatile emissions of mutant and normal cabbage looper moths, Trichoplusia ni. J. Insect Physiol. 36:769–774.

    Article  CAS  Google Scholar 

  • Hunt, R. E., Zhao, B., and Haynes, K. F. 1990. Genetic aspects of interpopulational differences in the pheromone blend of the cabbage looper moth, Trichoplusia ni. J. Chem. Ecol. 16:2935–2946.

    Article  CAS  Google Scholar 

  • Klun, J. A., and Maini, S. 1979. Genetic basis of an insect chemical communication system: the European corn borer. Environ. Entomol. 8:423–426.

    CAS  Google Scholar 

  • Lande, R. 1979. Quantitative genetic analysis of multivariate evolution applied to brain: body area allometry. Evolution 33:402–416.

    Article  Google Scholar 

  • Lande, R., and Arnold, S. J. 1983. The measurement of selection on correlated characters. Evolution 37:1210–1226.

    Article  Google Scholar 

  • Linn, C. E., and Roelofs, W. L. 1985. Response specificity of male pink bollworm moths to different blends and dosages of sex pheromone. J. Chem. Ecol. 11:1583–1590.

    Article  CAS  Google Scholar 

  • Linn, C. E. Jr., Campbell, M. G., and Roelofs, W. L. 1987. Pheromone components and active spaces: what do moths smell and where do they smell it? Science 237:650–652.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. -B., and Haynes, K. F. 1994. Evolution of behavioral responses to sex pheromone in mutant laboratory colonies of Trichoplusia ni. J. Chem. Ecol. 20:231–237.

    Article  CAS  Google Scholar 

  • Löfstedt, C., and Kozlov, M. 1997. A phylogenetic analysis of pheromone communication in primitive moths, pp. 473–489, in R. T., Cardé, A. K., and Minks (eds.). Insect Pheromone Research: New Directions. Cambridge University Press, Cambridge.

    Google Scholar 

  • McElfresh, J. S., and Millar, J. G. 2001. Geographic variation in the pheromone system of the saturniid moth Hemileuca eglanterina. Ecology 82:3505–3518.

    Google Scholar 

  • Miller, J. R., and Roelofs, W. L. 1978. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones. J. Chem. Ecol. 4:187–198.

    Article  Google Scholar 

  • Phelan, P. L. 1997. Evolution of mate-signaling in moths: phylogenetic considerations and predictions from the asymmetric tracking hypothesis, pp. 240–256, in J. C., Choe, B. J., and Crespi (eds.). The Evolution of Mating Systems in Insects and Arachnids. Cambridge University Press, New York.

    Google Scholar 

  • Reznick, D., Nunney, L., and Tessier, A. 2000. Big houses, big cars, superfleas and the cost of reproduction. Trends Ecol. Evol. 15:421–425.

    Article  PubMed  Google Scholar 

  • Roelofs, W. L. 1978. Threshold hypothesis for pheromone perception. J. Chem. Ecol. 4:685–699.

    Article  CAS  Google Scholar 

  • Roelofs, W. L., and Comeau, A. 1969. Sex pheromone specificity: taxonomic and evolutionary aspects in Lepidoptera. Science 165:398–399.

    Article  PubMed  CAS  Google Scholar 

  • Roelofs, W. L., Glover, T., Tang, X., Sreng, I., Robbins, P., Eckenrode, C., Löfstedt, C., Hansson, B. S., and Bengtsson, B. O. 1987. Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc. Natl. Acad. Sci. U. S. A. 84:7585–7589.

    Article  PubMed  CAS  Google Scholar 

  • Roff, D. A. 1992. The Evolution of Life Histories. Chapman and Hall, London.

    Google Scholar 

  • Sas 1996. SAS User’s Guide: Basics. 6.03th edn.SAS Institute Inc, Cary, NC.

    Google Scholar 

  • Schek, A. L., Groot, A. T., Ward, C. M., Gemeno, C., Wang, J., Brownie, C., Schal, C., and Gould, F. 2006. Genetics of sex pheromone blend differences between Heliothis viriscens and Heliothis subflexa: a chromosome mapping approach. J. Evol. Biol. 19:600–617.

    Article  CAS  Google Scholar 

  • Shorey, H. H., and Hale, R. L. 1965. Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J. Econ. Entomol. 58:522–524.

    Google Scholar 

  • Sreng, I., Glover, T., and Roelofs, W. 1989. Canalization of the redbanded leafroller moth sex pheromone blend. Arch. Insect Biochem. Physiol. 10:73–82.

    Article  CAS  Google Scholar 

  • Stearns, S. C. 1992. The Evolution of Life Histories. Oxford University Press, Oxford.

    Google Scholar 

  • Svensson, G. P., Ryne, C., and Löfstedt, C. 2002. Heritable variation of sex pheromone composition and the potential for evolution of resistance to pheromone-based control of the Indian meal moth, Plodia interpunctella. J. Chem. Ecol. 28:1447–1461.

    Article  PubMed  CAS  Google Scholar 

  • Tumlinson, J. H., Yonce, C. E., Doolittle, R. E., Heath, R. R., Gentry, C. R., and Mitchell, E. R. 1974. Sex pheromones and reproductive isolation of the lesser peachtree borer and the peachtree borer. Science 185:614–616.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J., Chastain, B. C., Spohn, B. G., and Haynes, K. F. 1997. Assortative mating in two pheromone strains of the cabbage looper moth, Trichoplusia ni. J. Insect Behav. 10:805–808.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to B. Chastain for reliable and invaluable technical assistance and to Drs. C. Gemeno and M. Evenden for comments and discussions. The research was supported by the Kentucky Agricultural Experiment Station and a competitive grant from the USDA, Cooperative State Research and Extension Service (97-35302-4324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth F. Haynes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmann, D.J., Allison, J.D. & Haynes, K.F. Trade-Off Between Sensitivity and Specificity in the Cabbage Looper Moth Response to Sex Pheromone. J Chem Ecol 34, 1476–1486 (2008). https://doi.org/10.1007/s10886-008-9546-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9546-8

Keywords

Navigation