Journal of Chemical Ecology

, Volume 34, Issue 9, pp 1180–1189 | Cite as

Identification and Field Evaluation of Grape Shoot Volatiles Attractive to Female Grape Berry Moth (Paralobesia viteana)

  • Dong H. Cha
  • Satoshi Nojima
  • Stephen P. Hesler
  • Aijun Zhang
  • Charles E. LinnJr.
  • Wendell L. Roelofs
  • Gregory M. Loeb
Article

Abstract

Solid-phase microextraction (SPME) and gas chromatography coupled with electroantennographic detection (GC-EAD) were used to identify volatile compounds from shoots of riverbank grape (Vitis riparia) that attract the female grape berry moth (GBM, Paralobesia viteana). Consistent EAD activity was obtained for 11 chemicals: (Z)-3-hexen-1-yl acetate, (E)-linalool oxide, (Z)-linalool oxide, nonanal, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate, decanal, β-caryophyllene, germacrene-D, and α-farnesene. In flight-tunnel tests that involved female GBM and rubber septa loaded with subsets of these 11 compounds, we found that both the 11-component blend and a seven-component blend, composed of (E)-linalool oxide, (Z)-linalool oxide, nonanal, (E)-4,8-dimethyl-1,3,7-nonatriene, decanal, β-caryophyllene and germacrene-D, elicited equivalent levels of upwind flight as freshly cut grape shoots. The removal of any of the seven compounds from the seven-component blend resulted in a significant decrease in female upwind flight responses. In a field trial with these two synthetic blends, traps equipped with either blend captured more female GBM compared to traps baited with hexane only (control), although the number of females caught was generally low. There were no differences in the number of males captured among treatments. Although in flight-tunnel trials, moths readily flew upwind to both grape shoots and rubber septa loaded with the best lures, they landed on shoots but not on rubber septa. Coupled with relatively low field catches, this suggests that additional host finding cues need to be identified to improve trap efficacy.

Keywords

Flight tunnel Field test Synthetic blend Paralobesia viteana Vitis spp. Host volatiles Tortricidae 

References

  1. Angioy, A. M., Desogus, A., Barbarossa, I. T., Anderson, P., and Hansson, B. S. 2003. Extreme sensitivity in an olfactory system. Chem. Sens. 28:279–284.CrossRefGoogle Scholar
  2. Ansebo, L., Coracini, M. D. A., Bengtsson, M., Liblikas, I., Ramirez, M., Borg-Karlson, A. K., Tasin, M., and Witzgall, P. 2004. Antennal and behavioural response of codling moth Cydia pomonella to plant volatiles. J. Appl. Entomol. 128:488–493.CrossRefGoogle Scholar
  3. Bernays, E. A., and Chamman, R. F. 1994. Host plant selection by phytophagous insects. Chapman & Hall, New York.Google Scholar
  4. Blackmer, J. L., and Cañas, L. A. 2005. Visual cues enhance the response of Lygus hesperus (Heteroptera: Miridae) to volatiles from host plants. Environ. Entomol. 34:1524–1533.Google Scholar
  5. Blackmer, J. L., Rodriguez-Saona, C., Byers, J. A., Shope, K. L., and Smith, J. P. 2004. Behavioral response of Lygus hesperus to conspecifics and headspace volatiles of alfalfa in a Y-tube olfactometer. J. Chem. Ecol. 30:1547–1564.PubMedCrossRefGoogle Scholar
  6. Bruce, T. J. A., Wadhams, L. J., and Woodcock, C. M. 2005. Insect host location: a volatile situation. Trend. Plant Sci. 10:269–274.CrossRefGoogle Scholar
  7. Butler, L. I., and Mcdonough, L. M. 1979. Insect sex-pheromones—evaporation rates of acetates from natural-rubber septa. J. Chem. Ecol. 5:825–837.CrossRefGoogle Scholar
  8. Cha, D. H., Hesler, S. P., Moser, C. L., Nojima, S., Linn, C. E., Roelofs, W. L., and Loeb, G. M. 2008. Flight tunnel responses of female grape berry moth (Paralobesia viteana) to host plants. J. Chem. Ecol. PubMedCrossRefGoogle Scholar
  9. Clark, L. G., and Dennehy, T. J. 1988. Oviposition behavior of grape berry moth. Entomol. Exp. Appl. 47:223–230.CrossRefGoogle Scholar
  10. Coracini, M., Bengtsson, M., Liblikas, I., and Witzgall, P. 2004. Attraction of codling moth males to apple volatiles. Entomol. Exp. Appl. 110:1–10.CrossRefGoogle Scholar
  11. Davies, E. 1987. Wound responses in plants, pp, pp. 243–264, in D. Davies (ed.). The Biochemistry of PlantsAcademic, London.Google Scholar
  12. Dozier, H. L., and Butler, H. G. 1929. Life history and control of the grape berry moth in Delaware. J. Econom. Entomol. 22:132–136.Google Scholar
  13. Engelberth, J., Alborn, H. T., Schmelz, E. A., and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. PNAS USA 101:1781–1785.PubMedCrossRefGoogle Scholar
  14. Ephrussi, B., and Beadle, G. W. 1936. A technique for transplantation of Drosophila. Am. Nat. 70:218–225.CrossRefGoogle Scholar
  15. Gleissner, B. D. 1943. Biology and control of berry moth in the Erie grape belt. Pennsylvania State College School of Agriculture Bulletin 451:1–74.Google Scholar
  16. Goodwin, W. H. 1916. The grape berry moth. Ohio Agricultural Experiment Station Bulletin 293:259–307.Google Scholar
  17. Greenwald, R., Chaykovsky, M., and Corey, E. J. 1963. TheWittig reaction using methylsulfinyl carbanion–dimethyl sulfoxide. J. Org. Chem. 28:1128–1129.CrossRefGoogle Scholar
  18. Hammack, L. 2003. Volatile semiochemical impact on trapping and distribution in maize of northern and western corn rootworm beetles (Coleoptera: Chrysomelidae). Agri. For. Entomol. 5:113–122.CrossRefGoogle Scholar
  19. Heath, R. R., Teal, P. E. A., Tumlinson, J. H., and Mengelkoch, L. J. 1986. Prediction of release ratios of multicomponent pheromones from rubber septa. J. Chem. Ecol. 12:2133–2143.CrossRefGoogle Scholar
  20. Hern, A., and Dorn, S. 2004. A female-specific attractant for the codling moth, Cydia pomonella, from apple fruit volatiles. Naturwissenschaften 91:77–80.PubMedCrossRefGoogle Scholar
  21. Hilker, M., and McNeil, J. 2008. Chemical and behavioral ecology in insect parasitoids: how to behave optimally in a complex odourous environment, pp. 92–112, in E. Wajnberg, C. Bernstein, and J. van Alphen (eds.). Behavioral Ecology of Insect ParasitoidsBlackwell, Malden, MA.CrossRefGoogle Scholar
  22. Hoffman, C. J. 1990. Development and validation of a risk assessment program for the management of grape berry moth, Endopiza viteana (Clemens), in New York state. PhD Dissertation, Cornell University, Ithaca, NY.Google Scholar
  23. Leskey, T. C., Zhang, A. J., and Herzog, M. 2005. Nonfruiting host tree volatile blends: novel attractants for the Plum curculio (Coleoptera: Curculionidae). Environ. Entomol. 34:785–793.Google Scholar
  24. Masante-Roca, I., Anton, S., Delbac, L., Dufour, M.-C., and Gadenne, C. 2007. Attraction of the grapevine moth to host and non-host plant parts in the wind tunnel: effects of plant phenology, sex, and mating status. Entomol. Exp. Appl. 122:239–245.CrossRefGoogle Scholar
  25. Mitchell, V. J., Manning, L.- A. , Cole, L., Suckling, D. M., and El-Sayed, A. M. 2008. Efficacy of the pear ester as a monitoring tool for codling moth Cydia pomonella (Lepidoptera: Tortricidae) in New Zealand apple orchards. Pest Manage. Sci. 64:209–214.CrossRefGoogle Scholar
  26. Mumm, R., and Hilker, M. 2005. The significance of background odour for an egg parasitoid to detect plants with host eggs. Chem. Sens. 30:337–343.CrossRefGoogle Scholar
  27. Nagarkatti, S., Muza, A., and Saunders, M. 2000. Meridic diet for Endopiza viteana (Lepidoptera: Tortricidae). Can. Entomol. 132:259–261.CrossRefGoogle Scholar
  28. Natale, D., Mattiacci, L., Pasqualini, E., and Dorn, S. 2004. Apple and peach fruit volatiles and the apple constituent butyl hexanoate attract female oriental fruit moth, Cydia molesta, in the laboratory. J. Appl. Entomol. 128:22–27.CrossRefGoogle Scholar
  29. Nojima, S., Linn, C., Morris, B., Zhang, A. J., and Roelofs, W. 2003. Identification of host fruit volatiles from hawthorn (Crataegus Spp.) attractive to hawthorn-origin Rhagoletis pomonella flies. J. Chem. Ecol. 29:321–336.PubMedCrossRefGoogle Scholar
  30. Pinero, J. C., Jacome, I., Vargas, R., and Prokopy, R. J. 2006. Response of female melon fly, Bactrocera cucurbitae, to host-associated visual and olfactory stimuli. Entomol. Exp. Appl. 121:261–269.CrossRefGoogle Scholar
  31. Rhodes, J. D., Thain, J. F., and Wildon, D. C. 1999. Evidence for physically distinct systemic signalling pathways in the wounded tomato plant. Ann. Bot. 84:109–116.CrossRefGoogle Scholar
  32. Roelofs, W. L., Tette, J. P., Taschenberg, E. F., and Comeau, A. 1971. Sex pheromone of the grape berry moth: identification by classical and electroantennogram methods, and field tests. J. Insect Physiol. 17:2235–2243.PubMedCrossRefGoogle Scholar
  33. SAS Institute. 2000. SAS/STAT User's Guide. SAS Institute, Cary, North Carolina, USA.Google Scholar
  34. SAS Institute. 2006. The GLIMMIX Procedure. <http://www.sas.com>.
  35. Schoonhoven, L. M., Jermy, T., and van Loon, J. J. A. 1998. Insect–Plant Biology. Chapman & Hall, London, UK.Google Scholar
  36. Slingerland, M. V. 1904. The grape berry moth. Cornell University, Agricultural experiment station of the college of agriculture Bulletin 223:43–59.Google Scholar
  37. Taschenberg, E. F. 1945. The biology and control of the grape berry moth Polychrosis vineana (Clemens). PhD Dissertation, Cornell University, Ithaca, NY.Google Scholar
  38. Tasin, M., Anfora, G., Ioriatti, C., Carlin, S., De Cristofaro, A., Schmidt, S., Bengtsson, M., Versini, G., and Witzgall, P. 2005. Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J. Chem. Ecol. 31:77–87.PubMedCrossRefGoogle Scholar
  39. Tasin, M., Backman, A. C., Bengtsson, M., Ioriatti, C., and Witzgall, P. 2006a. Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144.PubMedCrossRefGoogle Scholar
  40. Tasin, M., Backman, A. C., Bengtsson, M., Varela, N., Ioriatti, C., and Witzgall, P. 2006b. Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology 16:87–92.CrossRefGoogle Scholar
  41. Tasin, M., Backman, A.-C., Coracini, M., Casado, D., Ioriatti, C., and Witzgall, P. 2007. Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry 68:203–209.PubMedCrossRefGoogle Scholar
  42. Thom, C., Guerenstein, P. G., Mechaber, W. L., and Hildebrand, J. G. 2004. Floral CO2 reveals flower profitability to moths. J. Chem. Ecol. 30:1285–1288.PubMedCrossRefGoogle Scholar
  43. Vallat, A., and Dorn, S. 2005. Changes in volatile emissions from apple trees and associated response of adult female codling moths over the fruit-growing season. J. Ag. Food Chem. 53:4083–4090.CrossRefGoogle Scholar
  44. Visser, J. H. 1986. Host odor perception in phytophagous insects. Annu. Rev. Entomol. 31:121–144.CrossRefGoogle Scholar
  45. Wallace, E. K., Albert, P. J., and Mcneil, J. N. 2004. Oviposition behavior of the eastern spruce budworm Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). J. Insect Behavior 17:145–154.CrossRefGoogle Scholar
  46. Weigle, T., Bixby, J., and English-Loeb, G. 1999. Reexamination of grape berry moth management practices in the Lake Erie region. 1998 New York State Fruit Project Reports Relating to IPM. NYS IPM Publication #216. Cornell University Cooperative Extension.Google Scholar
  47. Zhang, A. J., Linn, C., Wright, S., Prokopy, R., Reissig, W., and Roelofs, W. 1999. Identification of a new blend of apple volatiles attractive to the apple maggot, Rhagoletis pomonella. J. Chem. Ecol. 25:1221–1232.CrossRefGoogle Scholar
  48. Zhang, A., Oliver, J. E., Aldrich, J. R., Wang, B., and Mastro, V. C. 2002. Stimulatory beetle volatiles for the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky). Z. Naturforsch. 57c:553–558.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Dong H. Cha
    • 1
  • Satoshi Nojima
    • 1
  • Stephen P. Hesler
    • 1
  • Aijun Zhang
    • 2
  • Charles E. LinnJr.
    • 1
  • Wendell L. Roelofs
    • 1
  • Gregory M. Loeb
    • 1
  1. 1.Department of Entomology, NYS Agricultural Experimental StationCornell UniversityGenevaUSA
  2. 2.USDA-ARS-PSIInvasive Insect Biocontrol and Behavior LaboratoryBeltsvilleUSA

Personalised recommendations