Skip to main content
Log in

Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Maize roots respond to feeding by larvae of the beetle Diabrotica virgifera virgifera by releasing (E)-β-caryophyllene. This sesquiterpene, which is not found in healthy maize roots, attracts the entomopathogenic nematode Heterorhabditis megidis. In sharp contrast to the emission of virtually only this single compound by damaged roots, maize leaves emit a blend of numerous volatile organic compounds in response to herbivory. To try to explain this difference between roots and leaves, we studied the diffusion properties of various maize volatiles in sand and soil. The best diffusing compounds were found to be terpenes. Only one other sesquiterpene known for maize, α-copaene, diffused better than (E)-β-caryophyllene, but biosynthesis of the former is far more costly for the plant than the latter. The diffusion of (E)-β-caryophyllene occurs through the gaseous rather than the aqueous phase, as it was found to diffuse faster and further at low moisture level. However, a water layer is needed to prevent complete loss through vertical diffusion, as was found for totally dry sand. Hence, it appears that maize has adapted to emit a readily diffusing and cost-effective belowground signal from its insect-damaged roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, A. A., and Rutter, M. T. 1998. Dynamic anti-herbivore defense in ant-plants: the role of induced responses. Oikos 83:227–236.

    Article  Google Scholar 

  • Agrawal, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 29:1201–1202.

    Article  Google Scholar 

  • Akiyama, K., Matsuzaki, K., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827.

    Article  PubMed  CAS  Google Scholar 

  • Aratchige, N. S., Lesna, I., and Sabelis, M. W. 2004. Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exper. Appl. Acarology 33:21–30.

    Article  CAS  Google Scholar 

  • Baldwin, I. T., and Preston, C. A. 1999. The eco-physiological complexity of plant responses to insect herbivores. Planta 208:137–145.

    Article  CAS  Google Scholar 

  • Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:133–142.

    Article  CAS  Google Scholar 

  • Bertin, C., Yang, X., and Weston, L. A. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.

    Article  CAS  Google Scholar 

  • Boff, M. I. C., Zoon, F. C., and Smits, P. H. 2001. Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomol. Exp. Appl. 98:329–337.

    Article  Google Scholar 

  • Burnell, A. M., and Stock, S. P. 2000. Heterorhabditis, Steinernema and their bacterial symbionts—lethal pathogens of insects. Nematology 2:31–42.

    Article  Google Scholar 

  • Butler, L. G. 1995. Chemical communication between the parasitic weed Striga and its crop host—a new dimension in allelochemistry. pp. 158–168, in KInderjit , and FAEinhellig (eds.). Insights into Allelopathy, ACS Symposium SeriesACS Books, Washington, DC.

    Google Scholar 

  • Calyecac-Cortero, H. G., Cibrian-Tovar, J., Soto-Hernandez, M., and Garcia-Velasco, R. 2007. Isolation and identification of Physalis philadelphica Lam. volatiles. Agrociencia 41:337–346.

    Google Scholar 

  • Cheng, A. X., Xiang, C. Y., Li, J. X., Yang, C. Q., Hu, W. L., Wang, L. J., Lou, Y. G., and Chen, X. Y. 2007. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641.

    Article  PubMed  CAS  Google Scholar 

  • D’Alessandro, M., and Turlings, T. C. J. 2005. In Situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem. Senses 30:739–753.

    Article  PubMed  CAS  Google Scholar 

  • Degen, T., Dillmann, C., Marion-Poll, F., and Turlings, T. C. J. 2004. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 135:1928–1938.

    Article  PubMed  CAS  Google Scholar 

  • De, Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • Dicke, M., and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.

    Article  Google Scholar 

  • Dicke, M., and Hilker, M. 2003. Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl. Ecol. 4:3–14.

    Article  CAS  Google Scholar 

  • Dicke, M., Van Poecke, R. M. P., and De Boer, J. G. 2003. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl. Ecol. 4:27–42.

    Article  CAS  Google Scholar 

  • Erasto, P., Grierson, D. S., and Afolayan, A. J. 2006. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J. Ethnopharmacol. 106:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Firn, R. D., and Jones, C. G. 2000. The evolution of secondary metabolism - a unifying model. Mol. Microbiol. 37:989–994.

    Article  PubMed  CAS  Google Scholar 

  • Firn, R. D., and Jones, C. G. 2006. Do we need a new hypothesis to explain plant VOC emissions? Trends Plant. Sci. 11:112–113.

    Article  PubMed  CAS  Google Scholar 

  • Forst, S., and Nealson, K. 1996. Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp and Photorhabdus spp. Microbiol. Rev. 60:21–43.

    PubMed  CAS  Google Scholar 

  • Gaugler, R., Lewis, E., and Stuart, R. J. 1997. Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia 109:483–489.

    Article  Google Scholar 

  • Gorecki, T., and Namiesnik, J. 2002. Passive sampling. Trends Analyt. Chem. 21:276–291.

    Article  CAS  Google Scholar 

  • Hammack, L. 2001. Single and blended maize volatiles as attractants for diabroticite corn rootworm beetles. J. Chem. Ecol. 27:1373–1390.

    Article  PubMed  CAS  Google Scholar 

  • Helmig, D., Ortega, J., Duhl, T., Tanner, D., Guenther, A., Harley, P., Wiedinmyer, C., Milford, J., and Sakulyanontvittay, T. 2007. Sesquiterpene emissions from pine trees - Identifications, emission rates and flux estimates for the contiguous United States. Environ. Sci. Technol. 41:1545–1553.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J. J. 1996. Field performance of entomopathogenic nematodes for suppression of western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 89:366–372.

    Google Scholar 

  • Ji, Z. Q., Wu, W. J., Yang, H., Shi, B. J., and Wang, M. G. 2007. Four novel insecticidal sesquiterpene esters from Celastrus angulatus. Nat. Prod. Res. 21:334–342.

    Article  CAS  Google Scholar 

  • Journey, A. M., and Ostlie, K. R. 2000. Biological control of the western corn rootworm (Coleoptera: Chrysomelidae) using the entomopathogenic nematodes, Steinernema carpocapsae. Environ. Entomol. 29:822–831.

    Article  Google Scholar 

  • Karban, R., Agrawal, A. A., and Mangel, M. 1997. The benefits of induced defenses against herbivores. Ecology 78:1351–1355.

    Article  Google Scholar 

  • Karban, R., and Baldwin, I. 1997. Induced Responses to Herbivory. University Press of Chicago, Chicago.

    Google Scholar 

  • Kessler, A., and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Köllner, T., Held, M., Lenk, C., Hiltpold, I., Turlings, T. C. J., Gersgenzon, J., and Degenhardt, J. 2008. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494.

  • Koziel, J., Jia, M. Y., and Pawliszyn, J. 2000. Air sampling with porous solid-phase microextraction fibers. Anal. Chem. 72:5178–5186.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann, U., and van der Burgt, W. A. C. M. 1998. Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol 19:59N–68N.

    Google Scholar 

  • Levine, E., Oloumi, S. H., and Fisher, J. R. 1992. Discovery of multiyear diapause in Illinois and South Dakota northern corn rootworm (Coleoptera: Chrysomelidae) eggs and incidence of the prolonged diapause trait in Illinois. J. Econ. Entomol. 85:262–267.

    Google Scholar 

  • Liu, C. H., Mishra, A. K., and Tan, R. X. 2006. Repellent, insecticidal and phytotoxic activities of isoalantolactone from Inula racemosa. Crop Prot. 25:508–511.

    Article  CAS  Google Scholar 

  • Lowell, P. S., and Eklund, B. 2004. VOC emission fluxes as a function of lateral distance from the source. Environ. Prog. 23:52–58.

    Article  CAS  Google Scholar 

  • McCoy, C. W., Stuart, R. J., Duncan, L. W., and Nguyen, K. 2002. Field efficacy of two commercial preparations of entomopathogenic nematodes against larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in ALFISOL type soil. Fla. Entomol. 85:537–544.

    Article  Google Scholar 

  • McGechan, M. B., and Lewis, D. R. 2002. Transport of particulate and colloid-sorbed contaminants through soil, part 1: General principles. Biosystems Engineering 83:255–273.

    Article  Google Scholar 

  • Miller, N., Estoup, A., Toepfer, S., Bourguet, D., Lapchin, L., Derridj, S., Kim, K. S., Reynaud, P., Furlan, L., and Guillemaud, T. 2005. Multiple transatlantic introductions of the western corn rootworm. Science 310:992–992.

    Article  PubMed  CAS  Google Scholar 

  • Neveu, N., Grandgirard, J., Nenon, J. P., and Cortesero, A. M. 2002. Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J. Chem. Ecol. 28:1717–1732.

    Article  PubMed  CAS  Google Scholar 

  • O’Neil, M. E., Difonzo, C. D., and Landis, D. A. 2002. Western corn rootworm (Coleptera: Chrysomelidae) feeding on corn and soybean leaves affected by corn phenology. J. Econ. Entomol. 31:285–292.

    Google Scholar 

  • Owen, S. M., and Peñuelas, J. 2005. Opportunistic emissions of volatile isoprenoids. Trends Plant Sci. 10:420–426.

    Article  PubMed  CAS  Google Scholar 

  • Owen, S. M., and Penuelas, J. 2006. Response to Firn and Jones: Volatile isoprenoids, a special case of secondary metabolism. Trends Plant Sci 11:113–114.

    Article  CAS  Google Scholar 

  • Peñuelas, J., and Llusià, J. 2004. Plant VOC emissions: making use of the unavoidable. Trends Ecol. Evol. 19:402–404.

    Article  PubMed  Google Scholar 

  • Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Rasmann, S., and Turlings, T. C. J. 2008. First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369.

    Article  Google Scholar 

  • Rodriguez-Saona, C., Crafts-Brander, S. J., Pare, P. W., and Henneberry, T. J. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27:679–695.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, J., Bolbao, R., and Murillo, M. B. 1998. Adsorption of different VOC onto soil minerals from gas phase: Influence of mineral, type of VOC, and air humidity. Environ. Sci. Technol. 32:1079–1084.

    Article  CAS  Google Scholar 

  • Sabulal, B., Dan, M., Anil, J. J., Kurup, R., Pradeep, N. S., Valsamma, R. K., and George, V. 2006. Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India: Chemical characterization and antimicrobial activity. Phytochemistry 67:2469–2473.

    Article  PubMed  CAS  Google Scholar 

  • Schoonhoven, L. M., Jermy, T., and Van, Loon, J. J. A. 1998. Insect-Plant Biology: From Physiology to Evolution. Chapman and Hall, New York.

    Google Scholar 

  • Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.

    Article  CAS  Google Scholar 

  • Tholl, D., Cchen, F., Petri, J., Gershenzon, J., and Pichersky, E. 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J. 42:757–771.

    Article  PubMed  CAS  Google Scholar 

  • Toepfer, S., and Kuhlmann, U. 2004. Survey for natural enemies of the invasive alien chrysomelid, Diabrotica virgifera virgifera, in Central Europe. Biocontrol 49:385–395.

    Article  Google Scholar 

  • Tollefson, J. J. 1998. A pest insect adapts to the cultural control of crop rotation; Brighton Crop Protection Conference. Pests and Diseases 3:1029–1033.

    Google Scholar 

  • Tòth, M., Vuts, J., Szarukán, I., Juhász, I., and Manajlovics, F. 2007. Preliminary study of female-targeted semiochemical baits for the western corn rootworm in Europe. J. Appl. Entomol. 131:416–419.

    Article  Google Scholar 

  • Turlings, T. C. J., Loughrin, J. H., McCall, P. J., Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parsitic wasps. Proc. Natl. Acad. Sci. USA 92:4169–4174.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J., and Ton, J. 2006. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr. Opin.Plant Biol. 9:421–427.

    Article  PubMed  Google Scholar 

  • Turlings, T. C. J., and Wacker, F. 2004. Recruitment of predators and parasitoids by herbivore injured-plants.. pp. 21–75, in R. T.Cardé, and J. G.Millar (eds.). Advances in Insect Chemical EcologyCambridge University Press, Cambridge.

    Google Scholar 

  • Van Tol, R. W. H. M., Van Der Sommen, A. T. C., Boff, M. I. C., Van Bezooijen, J., Sabelis, M. W., and Smits, P. H. 2001. Plants protect their roots by alerting the enemies of grubs. Ecology Lett. 4:292–294.

    Article  Google Scholar 

  • Vas, G., and Vekey, K. 2004. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 39:233–254.

    Article  PubMed  CAS  Google Scholar 

  • Vidal, S., Kuhlmann, U., and Edwards, R. 2005. Western Corn Rootworm: Ecology and Management. p. 324. CABI, Wallingford, United Kingdom.

    Google Scholar 

Download references

Acknowledgments

We thank all the members of the E-vol lab at the University of Neuchâtel for their support, in particular Matthias Held, Russell E. Naisbit, and Sarah Kenyon. We also thank Jean-Michel Gobat for advice on the experimental design, Violaine Jourdie for stimulating discussions and Marie-Eve Wyniger for assistance with the chemical analyses. This project was funded by the Swiss Confederation’s innovation promotion agency (CTI project no. 7487.1 LSPP-LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted C. J. Turlings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiltpold, I., Turlings, T.C.J. Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency. J Chem Ecol 34, 628–635 (2008). https://doi.org/10.1007/s10886-008-9467-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9467-6

Keywords

Navigation