Skip to main content
Log in

Enantiospecific Effect of Pulegone and Pulegone-Derived Lactones on Myzus persicae (Sulz.) Settling and Feeding

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The effect of pulegone chiral center configuration on its antifeedant activity to Myzus persicae was examined. Biological consequences of structural modifications of (R)-(+)- and (S)-(−)-pulegone, the lactonization, iodolactonization, and incorporation of hydroxyl and carbonyl groups were studied, as well. The most active compounds were (R)-(+)-pulegone (1a) and δ-hydroxy-γ-spirolactones (5S,6R,8S)-(−)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2-one (5b) and (5R,6S,8S)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2-one (6b) derived from (S)-(−)-pulegone (1b). The compounds deterred aphid probing and feeding at preingestional, ingestional, and postingestional phases of feeding. The preingestional effect of (R)-(+)-pulegone (1a) was manifested as difficulty in finding and reaching the phloem (i.e., prolonged time preceding the first contact with phloem vessels), a high proportion of probes not reaching beyond the mesophyll layer before first phloem phase, and/or failure to find sieve elements by 20% of aphids during the 8-hr experiment. The ingestional activity of (R)-(+)-pulegone (1a) and hydroxylactones 5b and 6b resulted in a decrease in duration of phloem sap ingestion, a decrease in the proportion of aphids with sustained sap ingestion, and an increase in the proportion of aphid salivation in phloem. δ-Keto-γ-spirolactone (5R,8S)-(−)-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2,6-dione (8b) produced a weak ingestional effect (shortened phloem phase). The postingestional deterrence of (R)-(+)-pulegone (1a) and δ-hydroxy-γ-spirolactones (5R,6S,8R)-(+)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]-decan-2-one (5a), 5b, (5S,6R,8R)-6-hydroxy-4,4,8-trimethyl-1-oxaspiro[4.5]decan-2-one (6a), 6b, and δ-keto-γ-spirolactone 8b prevented aphids from settling on treated leaves. The trans position of methyl group CH3–8 and the bond C5–O1 in lactone 6b appeared to weaken the deterrent activity in relation to the cis diastereoisomer (5b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avalos, M., Babiano, R., Cintas, P., Jimenez, J. L., and Palacios, J. C. 2000. From parity to chirality: chemical implications revisited. Tetrahedron: Asymmetry. 11:2845–2874.

    Article  CAS  Google Scholar 

  • Avery, M. L., Decker, D. G., Humphrey, J. S., and Laukert, C. C. 1996. Mint plant derivatives as blackbird feeding deterrents. Crop. Prot. 15:461–464.

    Article  Google Scholar 

  • Blackman, R. L., and Eastop, V. F. 1985. Aphids on the World’s Crops: An Identification Guide. Wiley, New York.

    Google Scholar 

  • Caillaud, M. C. 1999. Behavioural correlates of genetic divergence due to host specialization in the pea aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 91:227–232.

    Article  Google Scholar 

  • Chan, K. K. 2001. Quantitation of monoterpenoid compounds with potential medicinal use in biological fluids. J. Chromatogr. A. 936:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Choi, W., Park, B., Lee, Y., Jang, D. Y., Yoon, H. Y., and Lee, S. 2006. Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop. Prot. 25:398–401.

    Article  CAS  Google Scholar 

  • Cole, R. A., Rigall, W., and Morgan, A. 1993. Electronically monitored feeding behaviour of the lettuce root aphid (Pemphigis bursarius) on resistant and susceptible lettuce varieties. Entomol. Exp. Appl. 68:179–185.

    Article  Google Scholar 

  • Conover, M. R., and Lyons, K. S. 2005. Will free-ranging predators stop depredating untreated eggs in pulegone-scented gull nests after exposure to pulegone-injected eggs? Appl. Anim. Behav. Sci. 93:135–145.

    Article  Google Scholar 

  • Dams, I., Białońska, A., Ciunik, Z., and Wawrzeńczyk, C. 2004a. Lactones.21. Synthesis and odoriferous properties of lactones with the p-menthane system. J. Agric. Food Chem. 52:1630–1634.

    Article  PubMed  CAS  Google Scholar 

  • Dams, I., Białońska, A., Ciunik, Z., and Wawrzeńczyk, C. 2004b. Lactones. 22. Synthesis of terpenoid lactones with the p-menthane system. Eur. J. Org. Chem. 2004:2662–2668.

  • Frazier, J. L., and Chyb, S. 1995. Use of feeding inhibitors in insect control, pp. 364–381, in R. F. Chapman, and G. de Boer (eds.). Regulatory Mechanisms in Insect FeedingChapman & Hall, New York.

    Google Scholar 

  • Franzios, G., Mirotsou, M., Hatziapostolou, E., Kral, J., Scouras, Z. G., and Mavragani-tsipidou, P. 1997. Insecticidal and genotoxic activities of mint essential oils. J. Agric. Food Chem. 45:2690–2694.

    Article  CAS  Google Scholar 

  • Gabrys, B., Dancewicz, K., Halarewicz-pacan, A., and Janusz, E. 2005. Effect of natural monoterpenes on behaviour of the peach potato aphid Myzus persicae (Sulz.). IOBC/WPRS Bull. 28:29–34.

    Google Scholar 

  • Gabrys, B., and Pawluk, M. 1999. Acceptability of different species of Brassicaceae as hosts for the cabbage aphid. Entomol. Exp. Appl. 91:105–109.

    Article  Google Scholar 

  • Gabrys, B., and Tjallingii, W. F. 2002. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl. 104:89–93.

    Article  CAS  Google Scholar 

  • Gabrys, B., Tjallingii, W. F., and Van beek, T. 1997. Analysis of EPG recorded probing by cabbage aphid on host plant parts with different glucosinolate contents. J. Chem. Ecol. 23:1661–1673.

    Article  CAS  Google Scholar 

  • Garzo, E., Palacios, I., and Fereres, A. 2004. Characterization of melon germplasm resistant to Aphis gossypii Glover, pp. 441–447, in J. J. Simon, C. A. Dedryver, C. Rispe, and M. Hulle (eds.). Aphids in a New MillenniumINRA, Paris.

    Google Scholar 

  • Gata-Gonçalves, L., Nogueira, J. M. F., Matos, O., and De sousa, R. B. 2003. Photoactive extracts from Thevetia peruviana with antifungal properties against Cladosporium cucumerinum. J. Photochem. Photobiol. B. 70:51–54.

    Article  PubMed  CAS  Google Scholar 

  • Givovich, A., and Niemeyer, H. 1995. Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomol. Exp. Appl. 74:115–119.

    Article  CAS  Google Scholar 

  • Gutierrez, C., Fereres, A., eina, M., Cabrera, R., and Gonzaes-coloma, A. 1997. Behavioral and sublethal effects of structurally related lower terpenes on Myzus persicae. J. Chem. Ecol. 23:1641–1650.

    Article  CAS  Google Scholar 

  • Halarewicz-Pacan, A., Gabryś, B., Dancewicz, K., and Wawrzeńczyk, C. 2003. Enantiospecific effect of limonene and limonene-derived bicyclic lactones on settling and probing behaviour of the peach potato aphid Myzus persicae (Sulz.). J. Plant Prot. Res. 43:133–142.

    CAS  Google Scholar 

  • Harrewijn, P. 1990. Resistance mechanisms of plant genotypes to various aphid species, pp. 117–130, in R. K. Campbell, and R. D. Eikenbary (eds.). Aphid–Plant Genotype InteractionsAmsterdam, Elsevier.

    Google Scholar 

  • Harrewijn, P., Van oosten, A. M., and Piron, P. G. M. 2001. Natural Terpenoids as Messengers. Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Hori, M. 1998. Repellency of rosemary oil against Myzus persicae in a laboratory and in a screenhouse. J. Chem. Ecol. 24:1425–1432.

    Article  CAS  Google Scholar 

  • Hori, M. 1999. Antifeeding, settling inhibitory and toxic activities of labiate essential oils against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool. 34:113–118.

    CAS  Google Scholar 

  • Juza, M., Mazzonti, M., and Morbidelli, M. 2000. Simulated moving-bed chromatography and its application to chirotechnology. Trends Biotechnol. 18:108–118.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Peterson, C. J., and Coats, J. R. 2003. Fumigation toxicity of monoterpenoids to several stored product insects. J. Stored. Prod. Res. 39:77–85.

    Article  CAS  Google Scholar 

  • Leszczynski, B. 2001. Rola allelozwiązków w oddziaływaniach owady–rośliny, pp. 61–86, in W. Oleszek, K. Głowniak, and B. Leszczyński (eds.). Biochemiczne oddziaływania środowiskoweAkademia Medyczna, Lublin.

    Google Scholar 

  • Ley, S. V., and Toogood, P. L. 1990. Insect antifeedants. Chem. Br. 1:31–35.

    Google Scholar 

  • Martin, B., Collar, J. L., Tjallingii, W. F., and Fereres, A. 1997. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78:2701–2705.

    PubMed  CAS  Google Scholar 

  • Mason, J. R., and Epple, G. 1998. Evaluation of bird repellent additives to a simulated pesticide carrier formation. Crop Prot. 17:657–659.

    Article  CAS  Google Scholar 

  • Mayoral, A. M., Tjallingii, W. F., and Castanera, P. 1996. Probing behaviour of Diuraphis noxia on five cereal species with different hydroxyamic acid levels. Entomol. Exp. Appl. 78:341–348.

    CAS  Google Scholar 

  • Miles, P. W. 1990. Aphid salivary secretions and their involvement in plant toxicoses, pp. 131–147, in R. K. Campbell, and R. D. Eikenbary (eds.). Aphid-Plant Genotype interactionsElsevier Science, Amsterdam.

    Google Scholar 

  • Miles, P. W., and Oertli, J. J. 1993. The significance of antioxidants in the aphid-plant interaction: the redox hypothesis. Entomol. Exp. Appl. 67:275–283.

    Article  CAS  Google Scholar 

  • Nisbet, A. J., Woodford, J. A. T., and Connolly, J. D. 1993. Systemic antifeedant effects of azadirachtin on the peach-potato aphid Myzus persicae. Entomol. Exp. Appl. 68:87–98.

    Article  CAS  Google Scholar 

  • Oyedele, A. O., Gbolade, A. A., Sosan, M. B., Adewoyin, F. B., Soyelu, O. L., and Orafidiya, O. O. 2002. Formulation of an effective mosquito-repellent topical product from Lemongrass oil. Phytomedicine. 9:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Phatak, S. V., and Heble, M. R. 2002. Organogenesis and terpenoid synthesis in Mentha arvensis. Fitoterapia. 73:32–39.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J. A. 1991. Lower terpenoids as natural insect control agents, pp. 297–313, in J. B. Harborne, and F. A. Tomas-Barberan (eds.). Ecological Chemistry and Biochemistry of Plant TerpenoidsClarendon, Oxford.

    Google Scholar 

  • Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1994. Attempts to control aphid pests by integrated use of semiochemicals, pp 1239−1246. Brighton Crop Protection Conference—Pests and Diseases. British Crop Protection Council, Thornton Heath, UK.

  • Polonsky, J., Bhatnagar, S. C., Griffiths, D. C., Pickett, J. A., and Woodcock, C. M. 1989. Activity of qassinoids as antifeedants against aphids. J. Chem. Ecol. 15:933–998.

    Article  Google Scholar 

  • Ponsen, M. B. 1987. Alimentary tract, pp. 79–97, in A. K. Minks, and P. Harrewijn (eds.). Aphids, Their Biology, Natural Enemies and Control. Vol. AElsevier, Amsterdam.

    Google Scholar 

  • Powell, G. 2004. Sieve element salivation and the transmission to ingestion, pp. 479–483, in J. J. Simon, C. A. Dedryver, C. Rispe, and M. Hulle (eds.). Aphids in a New MillenniumINRA, Paris.

    Google Scholar 

  • Powell, G., Hardie, J., and Pickett, J. A. 1997. Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids. Entomol. Exp. Appl. 84:189–193.

    Article  CAS  Google Scholar 

  • Price, D. N., and Berry, M. S. 2006. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 52:309–319.

    Article  PubMed  CAS  Google Scholar 

  • Salvatore, A., Borkosky, S., Willink, E., and Bardon, A. 2004. Toxic effects of lemon peel constituents on Ceratitis capitata. J. Chem. Ecol. 30:323–333.

    Article  PubMed  CAS  Google Scholar 

  • Sauge, M. H., Kervella, J., and ahbe, Y. 1998. Probing behaviour of the green peach aphid Myzus persicae on resistant Prunus genotypes. Entomol. Exp. Appl. 89:223–232.

    Article  Google Scholar 

  • Simmonds, M. S. J. 1998. Chemoecology. The legacy left by Tony Swain. Phytochemistry. 49:1183–1190.

    Article  CAS  Google Scholar 

  • Szczepanik, M., Dams, I., and Wawrzenczyk, C. 2005. Feeding deterrent activity of terpenoid lactones with the p-menthane system against the Colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 34:1433–1440.

    Article  CAS  Google Scholar 

  • Tjallingii, W. F. 1994. Sieve element acceptance by aphids. Eur. J. Entomol. 91:47–52.

    Google Scholar 

  • Tjallingii, W. F. 2001. Plant penetration by aphids as revealed by electrical penetration graphs. Aphids and other Homopterous Insects. 8:105–120.

    Google Scholar 

  • Tjallingii, W. F., and Cherqui, A. 1999. Aphid saliva and aphid-plant interactions. Exp. Appl. Entomol. 10:169–174.

    Google Scholar 

  • Tjallingii, W. F., and Mayoral, A. M. 1992. Criteria for host plant acceptance by aphids, pp. 280–282, in S. B. J. Menken, J. H. Visser, and P. Harrewijn (eds.). Proc. 8th Int. Symp. Insect-Plant RelationshipsKluwer, Dordrecht.

    Google Scholar 

  • Unelius, C. R., Nordlander, G., Nordenhem, H., Hellqvist, C., Legrand, S., and Borg-karlson, A-K. 2006. Structureactivity relationships of benzoic acid derivatives as antifeedants for the pine weevil, Hylobius abietis. J. Chem. Ecol. 32:2191–2203.

    Article  PubMed  CAS  Google Scholar 

  • Van helden, M., and Tjallingii, W. F. 1993. Tissue localisation of lettuce resistance to the aphid Nasonovia ribisnigri using electrical penetration graphs. Entomol. Exp. Appl. 68:269–278.

    Article  Google Scholar 

  • Van hoof, H. A. 1958. An Investigation of the Biological Transmission of a Non-Persistent Virus, p. 112, in A. Van Putten and B. Oortmeier (eds.). Meded. Inst. Planteziektenkundig. Wageningen Agricultural University, Alkmaar.

  • Vetere, V., Santori, G. F., Moglioni, A., Moltrasio iglesias, G. Y., Casella, M. L., and Ferretti, O. A. 2002. Hydrogenation of (−)-menthone, (+)-isomenthone, and (+)-pulegone with platinum/tin catalysts. Catal. Letters 84:251–257.

    Article  CAS  Google Scholar 

  • Wawrzenczyk, C., Dams, I., Szumny, A., Szczepanik, M., Nawrot, J., Pradzynska, A., Gabtys, B., Dancewicz, K., Magnucka, E., Gawdzik, B., Obara, R., and Wzorek, A. 2005. Synthesis and evaluation of antifeedant, antifungal and atibacterial activity of isoprenoid lactones. Pol. J. Environ. Stud. 14:Suppl69–84.

    Google Scholar 

  • Wawrzeńczyk, C., Paruch, E., Olejniczak, T., Saletra, A., Nawrot, J., Prądzyńska, A., Halarewicz-pacan, A., and Gabryś, B. 1997. Lactones 4. The effect of the compound configuration on the feeding deterrent activity of some terpenoid lactones. Proc. 2nd International Conference on Insects: Chemical, Physiological and Environmental Aspects, September 14–19, Lądek Zdrój, Poland: 222–227.

  • Wawrzyniak, M. 1996. The effect of selected plant extracts on the cabbage butterfly, Pieris brassicae L. (Lepidoptera). Pol. J. Ent. 65:93.

    Google Scholar 

  • Wellings, P. W., Ward, S. A., Dixon, A. F. G., and abbinge, R. 1989. Crop loss assessment, pp. 49–64, in A. K. Minks, and P. Harrewijn (eds.). Aphids, Their Biology, Natural Enemies and Control. Vol. CElsevier, Amsterdam.

    Google Scholar 

  • Wensler, R. J. D., and Filshie, B. K. 1969. Gustatory sense organs in the food canal of aphids. J. Morphol. 129:473–492.

    Article  Google Scholar 

  • Wilkinson, T. L., and Douglas, A. E. 1998. Plant penetration by pea aphids (Acyrthosiphon pisum) of different plant range. Ent. Exp. Appl. 87:43–50.

    Article  Google Scholar 

  • Wittstock, U., and Gershenzon, J. 2002. Constitutive plant toxins and theirs role in defense against herbivores and pathogens. Curr. Opin. Plant. Biol. 5:1–8.

    Article  Google Scholar 

  • Zhu, B. C. R., Henderson, G., Chen, F., Fei, H., and Laine, R. A. 2001. Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subterranean termite. J. Chem. Ecol. 27:1617–1625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Gabrys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dancewicz, K., Gabrys, B., Dams, I. et al. Enantiospecific Effect of Pulegone and Pulegone-Derived Lactones on Myzus persicae (Sulz.) Settling and Feeding. J Chem Ecol 34, 530–538 (2008). https://doi.org/10.1007/s10886-008-9448-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9448-9

Keywords

Navigation