An Antiaphrodisiac in Heliconius melpomene Butterflies

Abstract

Gilbert (1976) suggested that male-contributed odors of mated females of Heliconius erato could enforce monogamy. We investigated the pheromone system of a relative, Heliconius melpomene, using chemical analysis, behavioral experiments, and feeding experiments with labeled biosynthetic pheromone precursors. The abdominal scent glands of males contained a complex odor bouquet, consisting of the volatile compound (E)-β-ocimene together with some trace components and a less volatile matrix made up predominately of esters of common C16- and C18-fatty acids with the alcohols ethanol, 2-propanol, 1-butanol, isobutanol, 1-hexanol, and (Z)-3-hexenol. This bouquet is formed during the first days after eclosion, and transferred during copulation to the females. Virgin female scent glands do not contain these compounds. The transfer of ocimene and the esters was shown by analysis of butterflies of both sexes before and after copulation. Additional proof was obtained by males fed with labeled D-13C6– glucose. They produced 13C-labeled ocimene and transferred it to females during copulation. Behavioral tests with ocimene applied to unmated females showed its repellency to males. The esters did not show such activity, but they moderated the evaporation rate of ocimene. Our investigation showed that β-ocimene is an antiaphrodisiac pheromone of H. melpomene.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andersson, S. and Dobson, H. E. M. 2003a. Antennal responses to floral scents in the butterfly Heliconius melpomene. J. Chem. Ecol. 29:2319–2330.

    PubMed  Article  CAS  Google Scholar 

  2. Andersson, S. and Dobson, H. E. M. 2003b. Behavioral foraging responses by the butterfly Heliconius melpomene to Lantana camara floral scent. J. Chem. Ecol. 29:2303–2318.

    PubMed  Article  CAS  Google Scholar 

  3. Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2000. Sexual cooperation and conflict in butterflies: A male-transferred anti-aphrodisiac reduces harassment of recently mated females. Proc. R. Soc. Lond. B 267:1271–1275.

    Article  CAS  Google Scholar 

  4. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Botan. J. Linn. Soc. 140:129–153.

    Article  Google Scholar 

  5. Andersson, J., Borg-Karlson, A. K., and Wiklund, C. 2003. Antiaphrodisiacs in pierid butterflies: A theme with variation! J. Chem. Ecol. 29:1489–1499.

    PubMed  Article  CAS  Google Scholar 

  6. Bateman, P. W., Ferguson, J. W. H., and Yetman, C. A. 2006. Courtship and copulation, but not ejaculates, reduce the longevity of female field crickets (Gryllus bimaculatus). J. Zool. 268:341–346.

    Article  Google Scholar 

  7. Boggs, C. L., Smiley, J. T., and Gilbert, L. E. 1981. Patterns of pollen exploitation by Heliconius butterflies. Oecologia 48:284–289.

    Article  Google Scholar 

  8. Boppré, M. 1978. Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol. Exp. Appl. 24:264–277.

    Article  Google Scholar 

  9. Boppré, M. 1984. Chemically mediated interactions between butterflies, pp. 259–275, in R. I. Vane-Wright and P. R. Ackery (eds.). The Biology of Butterflies. GB-London: Academic Press, reprinted edition 1989 by Princeton University Press.

    Google Scholar 

  10. Cane, D. E. 1999. Isoprenoid biosynthesis: Overview, pp. 1–13, in D. Barton, K. Nakanishi, O. Meth-Cohn, D. E. Cane (eds.). Comprehensive Natural Products Chemistry Vol. 2. Elsevier, Amsterdam.

  11. Clutton-Block, T. and Langley, P. 1997. Persistent courtship reduces male and female longevity in captive tsetse flies Glossina morsitans morsitans Westwood (Diptera: Glossinidae). Behav. Ecol. 8:392–395.

    Article  Google Scholar 

  12. Conner, W. E., Boada, R., Schroeder, F. C., Gonzalez, A., Meinwald, J., and Eisner, T. 2000. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc. Natl. Acad. Sci. USA 97:14406–14411.

    Google Scholar 

  13. Cook, S. E., Vernon, J. G., Bateson, M., and Guilford, T. 1994. Mate choice in the polymorphic African swallowtail butterfly, Papilio dardanus: male-like female may avoid sexual harassment. Anim. Behav. 47:389–397.

    Article  Google Scholar 

  14. Danci, A., Gries, R., Schaefer, P. W., and Gries, G. 2006. Evidence for four-component close-range sex pheromone in the parasitic wasp Glyptapanteles flavicoxis. J. Chem. Ecol. 32:1539–1554.

    PubMed  Article  CAS  Google Scholar 

  15. Dickschat, J. S., Bode, H. B., Mahmud, T., Müller, R., and Schulz, S. 2005. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 70:5174–5182.

    PubMed  Article  CAS  Google Scholar 

  16. Drutu, I., Krygowski, E. S., and Wood, J. L. 2001. Reactive enols in synthesis 2. Synthesis of (+)-latifolic acid and (+)-latifoline. J. Org. Chem. 66:7025–7029.

    PubMed  Article  CAS  Google Scholar 

  17. Eisenreich, W., Bacher, A., Arigoni, D., and Rohdich, F. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell. Mol. Life Sci. 61:1401–1426.

  18. Eltringham, M. A. 1925. On the abdominal glands in Heliconius (Lepidoptera). Trans. Entomol. Soc. Lond. 269–275.

  19. Emsley, M. G. 1963. A morphological study of image Heliconiinae (Lep.: Nymphalidae) with a consideration of the evolutionary relationships within the group. Zoologica 48:85–131.

    Google Scholar 

  20. Engler-Chaouat, H. S. and Gilbert, L. E. 2007. De novo synthesis vs. sequestration: Negatively correlated metabolic traits and the evolution of host plant specialization in cyanogenic butterflies. J. Chem. Ecol. 33:25–42.

    PubMed  Article  CAS  Google Scholar 

  21. Estrada, C. and Jiggins, C. D. 2002. Patterns of pollen feeding and habitat preference among Heliconius species. Ecol. Entomol. 27:448–456.

    Article  Google Scholar 

  22. Franklin, C. L., Li, H., and Martin, S. F. 2003. Design, Synthesis, and Evaluation of water-soluble phospholipid analogues as inhibitors of phospholipase C from Bacillus cereus. J. Org. Chem. 68:7298–7307.

    PubMed  Article  CAS  Google Scholar 

  23. Gilbert, L. E. 1976. Postmating female odor in Heliconius butterflies: A male-contributed antiaphrodisiac? Science 193:419–420.

    PubMed  Article  CAS  Google Scholar 

  24. Happ, G. 1969. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L. Nature 222:180–181.

    PubMed  Article  CAS  Google Scholar 

  25. Jetz, W., Rowe, C., and Guilford, T. 2001. Non-warning odors trigger innate color aversions—as long as they are novel. Behav. Ecol. 12:134–139.

    Article  Google Scholar 

  26. Jiggins, C. D., Estrada, C., and Rodrigues, A. 2004. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J. Evol. Biol. 17:680–691.

    PubMed  Article  CAS  Google Scholar 

  27. Kaye, H., Mackintosch, N. J., Rothschild, M., and Moore, B. P. 1989. Odour of pyrazine potentiates an association between environmental cues and unpalatable taste. Anim. Behav. 37:1–6.

    Article  Google Scholar 

  28. Kukuk, P. 1985. Evidence for an antiaphrodisiac in the sweat bee Lasioglossum (Dialictus) zephyrum. Science 227:656–657.

    PubMed  Article  CAS  Google Scholar 

  29. Lindström, L., Rowe, C., and Guilford, T. 2001. Pyrazine odour makes visually conspicuous prey aversive. Proc. R. Soc. Lond B. 268:159–162.

    Article  Google Scholar 

  30. Matsushita, H. and Negishi, E. 1982. Palladium-catalyzed reactions of allylic electrophiles with organometallic reagents. A regioselective 1,4-elimination and a regio- and stereoselective reduction of allylic derivatives. J. Org. Chem. 47:4161–4165.

    Article  CAS  Google Scholar 

  31. Miyakado, M., Meinwald, J., and Gilbert, L. E. 1989. (R)-(Z,E)-9,11-Octadecadien-13-olide: An intriguing lactone from Heliconius pachinus (Lepidoptera). Experientia 45:1006–1008.

    PubMed  Article  CAS  Google Scholar 

  32. Moore, B. P., Brown, W. V., and Rothschild, M. 1990. Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology 1:43–51.

    Article  CAS  Google Scholar 

  33. Nahrstedt, A. and Davis, R. H. 1983. Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 75B:65–73.

    CAS  Google Scholar 

  34. Nahrstedt, A. and Davis, R. H. 1985. Biosynthesis and quantitative relationships of the cyanogenic glucosides, linamarin and lotaustralin, in genera of the Heliconiini (Insecta: Lepidoptera). Comp. Biochem. Physiol. 82B:745–749.

    CAS  Google Scholar 

  35. Pare, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–332.

    PubMed  Article  CAS  Google Scholar 

  36. Piel, J., Donath, J., Bandemer, K., and Boland, W. 1998. Mevalonate-independent biosynthesis of terpenoid volatiles in plants: induced and constitutive emission of volatiles. Angew. Chem. Int. Ed. 37:2478–2481.

    Article  CAS  Google Scholar 

  37. Ross, G. N., Fales, H. M., Lloyd, H. A., Jones, T., Sokoloski, E. A., Marshall-Batty, K., and Blum, M. S. 2001. Novel chemistry of abdominal defensive glands of nymphalid butterfly Agraulis vanillae. J. Chem. Ecol. 27:1219–1228.

    PubMed  Article  CAS  Google Scholar 

  38. Schulz, S., Beccaloni, G., Nishida, R., Roisin, Y., Vane-Wright, R. I., and Mcneil, J. N. 1998. 2,5-Dialkyltetrahydrofurans, common components of the cuticular lipids of Lepidoptera. Z. Naturforsch. 53c:107–116.

    Google Scholar 

  39. Schulz, S., Beccaloni, G., Brown, K. S., Boppré, M., Freitas, A. V. L., Ockenfels, P., and Trigo, J. R. 2004. Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae). Biochem. Syst. Ecol. 32:699–713.

    Article  CAS  Google Scholar 

  40. Schulz, S., Yildizhan, S., Stritzke, K., Estrada, C., and Gilbert, L. E. 2007. Macrolides from the scent glands of the tropical butterflies Heliconius cydno and Heliconius pachinus. Org. Biomol. Chem. 5:3434–3441.

    PubMed  Article  CAS  Google Scholar 

  41. Scott, D. 1986. Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc. Natl. Acad. Sci. USA 83:8429–8433.

    PubMed  Article  CAS  Google Scholar 

  42. Simmons, L. W. 2001. Sperm Competition and Its Evolutionary Consequences in the Insects. Princeton University Press, Princeton and Oxford.

    Google Scholar 

  43. Simonsen, T. J. 2006. Glands, muscles and genitalia. Morphological and phylogenetic implications of histological characters in the male genitalia of fritillary butterflies (Lepidoptera: Nymphalidae: Argynnini). Zool. Scripta 35:231–241.

    Article  Google Scholar 

  44. Sokal, R. R. and Rohlf, J. 1969. Biometry. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  45. Stavenga, D. G. 2002. Reflections on colourful ommatidia of butterfly eyes. J. Exp. Biol. 205:1077–1085.

    PubMed  Google Scholar 

  46. Swihart, C. A. 1972. The neural basis of color vision in the butterfly, Heliconius erato. J. Insect Physiol. 18:1015–1025.

    Article  Google Scholar 

  47. Thornhill, R. and Alcock, J. 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge.

    Google Scholar 

  48. Tomalsky, M. D., Blum, M. S., Jones, T. H., Fales, H. M., Howard, D. F., and Passera, L. 1987. Chemistry and function of exocrine glands of the ants Tapinoma melanocephalum and T. erraticum. J. Chem. Ecol. 13:253–263.

    Article  Google Scholar 

  49. Wedell, N. 2005. Female receptivity in butterflies and moths. J. Exp. Biol. 208:3433–3440.

    PubMed  Article  Google Scholar 

  50. Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.

    Article  Google Scholar 

  51. Williams, C. M. and Mander, L. N. 2001. Chromatography with silver nitrate. Tetrahedron 57:425–447.

    Article  CAS  Google Scholar 

  52. Zaccardi, G., Kelber, A., Sison-Mangus, M. P., and Briscoe, A. D. 2006. Color discrimination in the red range with only one long-wavelength sensitive opsin. J. Exp. Biol. 209:1944–1955.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank A. Wartenberg, R. Watkins, S. Marout, and K. Busby for assisting rearing butterflies; the United States Department of Agriculture for import and rearing permits, and Costa Rica’s Ministerio del Ambiente y Energía for collection and exportation permits. This work was funded by the Deutsche Forschungsgemeinschaft and the University of Texas at Austin graduate program in Ecology, Evolution, and Behavior. This material is also based on work supported by the National Science Foundation and the Office of International Science and Engineering under grant No 0608167. Austin facilities were developed through grants from NSF and matching support from UT Austin to LEG.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Schulz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schulz, S., Estrada, C., Yildizhan, S. et al. An Antiaphrodisiac in Heliconius melpomene Butterflies. J Chem Ecol 34, 82–93 (2008). https://doi.org/10.1007/s10886-007-9393-z

Download citation

Keywords

  • Pheromones
  • Heliconius
  • Antiaphrodisiacs
  • Sperm competition
  • Ocimene
  • Fatty acid esters
  • Labeled pheromone
  • Pheromone biosynthesis