Skip to main content

Floral Odors of Silene otites: Their Variability and Attractiveness to Mosquitoes

Abstract

Inflorescence scent samples from nine populations of dioecious Silene otites, a plant pollinated by moths and mosquitoes, were collected by dynamic headspace extraction. Sixty-three scent samples were analyzed by gas chromatography–mass spectrometry. Out of 38 found, 35 compounds were identified, most of which were monoterpenoids, fatty acid derivatives, and benzenoids. Phenyl acetaldehyde was the most dominant compound in the majority of samples. The variability in scent composition was high, and population and sex differences were found. Nevertheless, wind tunnel experiments proved similar attraction of Culex pipiens pipiens biotype molestus mosquitoes to the inflorescence odor of S. otites of different populations, indicating that different blends are similarly attractive to mosquitoes. The electrophysiological responses of mosquitoes to the 12 most common and abundant odor compounds of S. otites differed. Linalool oxide (furanoid) and linalool evoked the strongest responses in male and female mosquitoes, and (Z)-3-hexenyl acetate was strongly active in females. Medium responses were evoked in males by (Z)-3-hexenyl acetate, in females by benzaldehyde and methyl salicylate, and in both sexes by lilac aldehyde, lilac alcohol, and linalool oxide (pyranoid).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corporation, Carol Stream, Illinois.

    Google Scholar 

  2. Andersson, S., and Dobson, H. E. M. 2003. Antennal responses to floral scents in the butterfly Heliconius melpomene. J. Chem. Ecol 29:2319–2330.

    PubMed  Article  CAS  Google Scholar 

  3. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot. J. Linn. Soc 140:129–153.

    Article  Google Scholar 

  4. Ayasse, M., Schiestl, F. P., Paulus, H. F., Löfstedt, C., Hansson, B., Ibarra, F., and Francke, W. 2000. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success. Evolution 54:1995–2006.

    PubMed  CAS  Google Scholar 

  5. Azuma, H., Toyota, M., and Asakawa, Y. 2001. Intraspecific variation of floral scent chemistry in Magnolia kobus DC. (Magnoliaceae). J. Plant Res 114:411–422.

    Article  Google Scholar 

  6. Bengtsson, M. C., Witzgall, P., Kobro, S., Jaastad, G., Lofqvist, J. and Lindhe, C. 2007. Attractant for apple fruit moth and other insect pests of apple. United States Patent: 20070004686 A1.

  7. Borg-Karlson, A. K., Unelius, C. R., Valterová, I., and Nilsson, L. A. 1996. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 41:1477–1483.

    Article  CAS  Google Scholar 

  8. Bowen, M. F. 1992. Terpene sensitive receptors in female Culex pipiens mosquitoes: electrophysiology and behavior. J. Insect Physiol 38:759–764.

    Article  CAS  Google Scholar 

  9. Brantjes, N. B. M., and Leemans, J. A. A. M. 1976. Silene otites (Caryophyllaceae) pollinated by nocturnal Lepidoptera and mosquitoes. Acta Bot. Neerl 25:281–295.

    Google Scholar 

  10. Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol 18:117–143.

    Article  Google Scholar 

  11. Clarke, K. R., and Warwick, R. M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edition. Primer-E, Plymouth.

    Google Scholar 

  12. Clarke, K. R. and Gorley, R. N. 2006. Primer v6: User Manual/Tutorial. Primer-E, Plymouth.1–91.

  13. Dötterl, S., Füssel, U., Jürgens, A., and Aas, G. 2005a. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol 31:2993–2998.

    PubMed  Article  CAS  Google Scholar 

  14. Dötterl, S., Wolfe, L. M., and Jürgens, A. 2005b. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213.

    PubMed  Article  CAS  Google Scholar 

  15. Dötterl, S., Burkhardt, D., Weißbecker, B., Jürgens, A., Schütz, S., and Mosandl, A. 2006a. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatograph. A 1113:231–238.

    Article  CAS  Google Scholar 

  16. Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weißbecker, B., and Schütz, S. 2006b. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718.

    PubMed  Article  Google Scholar 

  17. Dudareva, N., and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633.

    PubMed  Article  CAS  Google Scholar 

  18. Gadawaski, R., and Smith, S. M. 1992. Nectar sources and age structure in a population of Aedes provocans (Diptera: Culicidae). Entomol. Soc. Am 29:876–886.

    Google Scholar 

  19. Grimstad, P. R., and Defoliart, G. R. 1974. Nectar sources of Wisconsin mosquitoes. J. Med. Entomol 11:331–341.

    PubMed  CAS  Google Scholar 

  20. Grimstad, P. R., and Defoliart, G. R. 1975. Mosquito nectar feeding in Wisconsin in relation to twilight and microclimate. J. Med. Entomol 11:691–698.

    PubMed  CAS  Google Scholar 

  21. Haeger, J. S. 1955. The non-blood feeding habits of Aedes taeniorhyndus (Diptera, Culicidae) on Sanibel Island, Florida. Mosq. News 15:21–26.

    Google Scholar 

  22. Harada, F., Moriya, K., and Yabe, T. 1971. Observations on the survival and longevity of the adult Culex mosquitoes fed on the flowers of some nectar plants. Jpn. J. Sanit. Zool 22:18–23.

    Google Scholar 

  23. Honda, K., Ômura, H., and Hayashi, N. 1998. Identification of floral volatiles from Ligustrum japonicum that stimulate flower visiting by cabbage butterfly, Pieris rapae. J. Chem. Ecol 24:2167–2180.

    Article  CAS  Google Scholar 

  24. Howse, E. P. 2003. Insect attractant. European Patent Specification EP 0 838998 B1.

  25. James, D. G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol 31:481–495.

    PubMed  Article  CAS  Google Scholar 

  26. Jhumur, U. S., Dötterl, S., and Jürgens, A. 2006. Naïve and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. J. Med. Entomol 43:1164–1170.

    PubMed  Article  Google Scholar 

  27. Jürgens, A., Witt, T., and Gottsberger, G. 2002. Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem. Syst. Ecol 30:383–397.

    Article  Google Scholar 

  28. Kessler, D., and Baldwin, I. T. 2007. Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854.

    PubMed  Article  CAS  Google Scholar 

  29. Kline, D. L., Bernier, U. R., Posey, K. H., and Barnard, D. R. 2003. Olfactometric evaluation of spatial repellents for Aedes aegypti. J. Med. Entomol 40:463–467.

    PubMed  CAS  Article  Google Scholar 

  30. Klowden, M. J. 1986. Effects of sugar deprivation on the host-seeking behavior of gravid Aedes aegypti mosquitoes. J. Insect Physiol 32:479–483.

    Article  CAS  Google Scholar 

  31. Knudsen, J. T. 2002. Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. Am. J. Bot 89:1772–1778.

    Google Scholar 

  32. Knudsen, J. T., Eriksson, R., Gershenzon, J., and Ståhl, B. 2006. Diversity and distribution of floral scent. Bot. Rev 72:1–120.

    Article  Google Scholar 

  33. Magnarelli, L. A. 1978. Nectar-feeding by female mosquitoes and its relation to follicular development and parity. J. Med. Entomol 14:527–530.

    PubMed  CAS  Google Scholar 

  34. Mant, J., Peakall, R., and Schiestl, F. P. 2005. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys. Evolution 59:1449–1463.

    PubMed  Google Scholar 

  35. Mauer, D. J., and Rowley, W. A. 1999. Attraction of Culex pipiens pipiens (Diptera: Culicidae) to flower volatiles. J. Med. Entomol 36:503–507.

    PubMed  CAS  Google Scholar 

  36. Nayar, J. K., and Saurman, D. M. 1971. The effect of diet on life-span, fecundity and flight potential of female Aedes taeniorhynchus adults. J. Med. Entomol 8:506–513.

    PubMed  CAS  Google Scholar 

  37. Nayar, J. K., and Saurman, D. M. 1975. The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 1. Utilization of sugar for survival. J. Med. Entomol 12:92–98.

    PubMed  CAS  Google Scholar 

  38. Ômura, H., Honda, K., and Hayashi, N. 2000. Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J. Chem. Ecol 26:655–666.

    Article  Google Scholar 

  39. Plepys, D., Ibarra, F., Francke, W., and Löfstedt, C. 2002a. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99:75–82.

    Article  CAS  Google Scholar 

  40. Plepys, D., Ibarra, F., and Löfstedt, C. 2002b. Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74.

    Article  CAS  Google Scholar 

  41. Raguso, R. A., and Light, D. M. 1998. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green-leaf volatiles. Entomol. Exp. Appl 86:287–293.

    Article  CAS  Google Scholar 

  42. Raguso, R. A., and Pichersky, E. 1999. A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biol 14:95–120.

    Article  Google Scholar 

  43. Raguso, R. A., Light, D. M., and Pickersky, E. 1996. Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J. Chem. Ecol 22:1735–1766.

    Article  CAS  Google Scholar 

  44. Rojas, J. C. 1999. Electrophysiological and behavioural responses of the cabbage moth to plant volatiles. J. Chem. Ecol 25:1867–1883.

    Article  CAS  Google Scholar 

  45. Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol 24:303–319.

    Article  Google Scholar 

  46. Sandholm, H. A., and Price, R. D. 1962. Field observations on the nectar feeding habits of some Minnesota mosquitoes. Mosq. News 22:346–349.

    Google Scholar 

  47. Schütz, S., Weißbecker, B., Koch, U. T., and Hummel, H. E. 1999. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens. Bioelectron 14:221–228.

    Article  Google Scholar 

  48. Statsoft, Inc. 2004. STATISTICA for Windows Version 7. www.statsoft.com.

  49. Stoutamire, W. P. 1968. Mosquito pollination of Habenaria obtusata (Orchidaceae). Mich. Bot 7:203–212.

    Google Scholar 

  50. Svensson, G. P., Hickman, M. O., Bartram, S., Boland, W., Pellmyr, O., and Raguso, R. A. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am. J. Bot 92:1624–1631.

    CAS  Google Scholar 

  51. Tollsten, L., and Bergström, G. 1993. Fragrance chemotypes of Platanthera (Orchidaceae): The result of adaptation to pollinating moths. Nord. J. Bot 13:607–613.

    Article  Google Scholar 

  52. Vargo, A. M., and Foster, W. A. 1982. Responsiveness of female Aedes aegypti (Diptera, Culicidae) to flower extracts. J. Med. Entomol 19:710–718.

    Google Scholar 

  53. Whitten, W. M., and Williams, N. H. 1992. Floral fragrances of Stanhopea (Orchidaceae). Lindleyana 7:130–153.

    Google Scholar 

Download references

Acknowledgements

The authors thank Sigrid Liede-Schumann for supporting this study and Taina Witt who gave valuable comments on earlier versions of the manuscript. Karlheinz Seifert and Jette Knudsen provided authentic standard compounds. Rainer Krug and Deinlein Heike helped in the cultivation of the plants. The comments of Monika Hilker and two anonymous referees were especially helpful for the improvement of the manuscript. Umma Salma Jhumur was funded by the German Research Foundation (DFG Research Training Group 678).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Umma Salma Jhumur.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jhumur, U.S., Dötterl, S. & Jürgens, A. Floral Odors of Silene otites: Their Variability and Attractiveness to Mosquitoes. J Chem Ecol 34, 14 (2008). https://doi.org/10.1007/s10886-007-9392-0

Download citation

Keywords

  • Silene otites
  • Flower odor variability
  • Wind tunnel bioassays
  • Culex pipiens pipiens biotype molestus
  • Electroantennography
  • Attraction
  • Nectar host plant