Floral Odors of Silene otites: Their Variability and Attractiveness to Mosquitoes

  • Umma Salma JhumurEmail author
  • Stefan Dötterl
  • Andreas Jürgens


Inflorescence scent samples from nine populations of dioecious Silene otites, a plant pollinated by moths and mosquitoes, were collected by dynamic headspace extraction. Sixty-three scent samples were analyzed by gas chromatography–mass spectrometry. Out of 38 found, 35 compounds were identified, most of which were monoterpenoids, fatty acid derivatives, and benzenoids. Phenyl acetaldehyde was the most dominant compound in the majority of samples. The variability in scent composition was high, and population and sex differences were found. Nevertheless, wind tunnel experiments proved similar attraction of Culex pipiens pipiens biotype molestus mosquitoes to the inflorescence odor of S. otites of different populations, indicating that different blends are similarly attractive to mosquitoes. The electrophysiological responses of mosquitoes to the 12 most common and abundant odor compounds of S. otites differed. Linalool oxide (furanoid) and linalool evoked the strongest responses in male and female mosquitoes, and (Z)-3-hexenyl acetate was strongly active in females. Medium responses were evoked in males by (Z)-3-hexenyl acetate, in females by benzaldehyde and methyl salicylate, and in both sexes by lilac aldehyde, lilac alcohol, and linalool oxide (pyranoid).


Silene otites Flower odor variability Wind tunnel bioassays Culex pipiens pipiens biotype molestus Electroantennography Attraction Nectar host plant 



The authors thank Sigrid Liede-Schumann for supporting this study and Taina Witt who gave valuable comments on earlier versions of the manuscript. Karlheinz Seifert and Jette Knudsen provided authentic standard compounds. Rainer Krug and Deinlein Heike helped in the cultivation of the plants. The comments of Monika Hilker and two anonymous referees were especially helpful for the improvement of the manuscript. Umma Salma Jhumur was funded by the German Research Foundation (DFG Research Training Group 678).


  1. Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing Corporation, Carol Stream, Illinois.Google Scholar
  2. Andersson, S., and Dobson, H. E. M. 2003. Antennal responses to floral scents in the butterfly Heliconius melpomene. J. Chem. Ecol 29:2319–2330.PubMedCrossRefGoogle Scholar
  3. Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot. J. Linn. Soc 140:129–153.CrossRefGoogle Scholar
  4. Ayasse, M., Schiestl, F. P., Paulus, H. F., Löfstedt, C., Hansson, B., Ibarra, F., and Francke, W. 2000. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success. Evolution 54:1995–2006.PubMedGoogle Scholar
  5. Azuma, H., Toyota, M., and Asakawa, Y. 2001. Intraspecific variation of floral scent chemistry in Magnolia kobus DC. (Magnoliaceae). J. Plant Res 114:411–422.CrossRefGoogle Scholar
  6. Bengtsson, M. C., Witzgall, P., Kobro, S., Jaastad, G., Lofqvist, J. and Lindhe, C. 2007. Attractant for apple fruit moth and other insect pests of apple. United States Patent: 20070004686 A1.Google Scholar
  7. Borg-Karlson, A. K., Unelius, C. R., Valterová, I., and Nilsson, L. A. 1996. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 41:1477–1483.CrossRefGoogle Scholar
  8. Bowen, M. F. 1992. Terpene sensitive receptors in female Culex pipiens mosquitoes: electrophysiology and behavior. J. Insect Physiol 38:759–764.CrossRefGoogle Scholar
  9. Brantjes, N. B. M., and Leemans, J. A. A. M. 1976. Silene otites (Caryophyllaceae) pollinated by nocturnal Lepidoptera and mosquitoes. Acta Bot. Neerl 25:281–295.Google Scholar
  10. Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol 18:117–143.CrossRefGoogle Scholar
  11. Clarke, K. R., and Warwick, R. M. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edition. Primer-E, Plymouth.Google Scholar
  12. Clarke, K. R. and Gorley, R. N. 2006. Primer v6: User Manual/Tutorial. Primer-E, Plymouth.1–91.Google Scholar
  13. Dötterl, S., Füssel, U., Jürgens, A., and Aas, G. 2005a. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol 31:2993–2998.PubMedCrossRefGoogle Scholar
  14. Dötterl, S., Wolfe, L. M., and Jürgens, A. 2005b. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213.PubMedCrossRefGoogle Scholar
  15. Dötterl, S., Burkhardt, D., Weißbecker, B., Jürgens, A., Schütz, S., and Mosandl, A. 2006a. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatograph. A 1113:231–238.CrossRefGoogle Scholar
  16. Dötterl, S., Jürgens, A., Seifert, K., Laube, T., Weißbecker, B., and Schütz, S. 2006b. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol 169:707–718.PubMedCrossRefGoogle Scholar
  17. Dudareva, N., and Pichersky, E. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633.PubMedCrossRefGoogle Scholar
  18. Gadawaski, R., and Smith, S. M. 1992. Nectar sources and age structure in a population of Aedes provocans (Diptera: Culicidae). Entomol. Soc. Am 29:876–886.Google Scholar
  19. Grimstad, P. R., and Defoliart, G. R. 1974. Nectar sources of Wisconsin mosquitoes. J. Med. Entomol 11:331–341.PubMedGoogle Scholar
  20. Grimstad, P. R., and Defoliart, G. R. 1975. Mosquito nectar feeding in Wisconsin in relation to twilight and microclimate. J. Med. Entomol 11:691–698.PubMedGoogle Scholar
  21. Haeger, J. S. 1955. The non-blood feeding habits of Aedes taeniorhyndus (Diptera, Culicidae) on Sanibel Island, Florida. Mosq. News 15:21–26.Google Scholar
  22. Harada, F., Moriya, K., and Yabe, T. 1971. Observations on the survival and longevity of the adult Culex mosquitoes fed on the flowers of some nectar plants. Jpn. J. Sanit. Zool 22:18–23.Google Scholar
  23. Honda, K., Ômura, H., and Hayashi, N. 1998. Identification of floral volatiles from Ligustrum japonicum that stimulate flower visiting by cabbage butterfly, Pieris rapae. J. Chem. Ecol 24:2167–2180.CrossRefGoogle Scholar
  24. Howse, E. P. 2003. Insect attractant. European Patent Specification EP 0 838998 B1.Google Scholar
  25. James, D. G. 2005. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J. Chem. Ecol 31:481–495.PubMedCrossRefGoogle Scholar
  26. Jhumur, U. S., Dötterl, S., and Jürgens, A. 2006. Naïve and conditioned responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae) to flower odors. J. Med. Entomol 43:1164–1170.PubMedCrossRefGoogle Scholar
  27. Jürgens, A., Witt, T., and Gottsberger, G. 2002. Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem. Syst. Ecol 30:383–397.CrossRefGoogle Scholar
  28. Kessler, D., and Baldwin, I. T. 2007. Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854.PubMedCrossRefGoogle Scholar
  29. Kline, D. L., Bernier, U. R., Posey, K. H., and Barnard, D. R. 2003. Olfactometric evaluation of spatial repellents for Aedes aegypti. J. Med. Entomol 40:463–467.PubMedCrossRefGoogle Scholar
  30. Klowden, M. J. 1986. Effects of sugar deprivation on the host-seeking behavior of gravid Aedes aegypti mosquitoes. J. Insect Physiol 32:479–483.CrossRefGoogle Scholar
  31. Knudsen, J. T. 2002. Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon. Am. J. Bot 89:1772–1778.Google Scholar
  32. Knudsen, J. T., Eriksson, R., Gershenzon, J., and Ståhl, B. 2006. Diversity and distribution of floral scent. Bot. Rev 72:1–120.CrossRefGoogle Scholar
  33. Magnarelli, L. A. 1978. Nectar-feeding by female mosquitoes and its relation to follicular development and parity. J. Med. Entomol 14:527–530.PubMedGoogle Scholar
  34. Mant, J., Peakall, R., and Schiestl, F. P. 2005. Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys. Evolution 59:1449–1463.PubMedGoogle Scholar
  35. Mauer, D. J., and Rowley, W. A. 1999. Attraction of Culex pipiens pipiens (Diptera: Culicidae) to flower volatiles. J. Med. Entomol 36:503–507.PubMedGoogle Scholar
  36. Nayar, J. K., and Saurman, D. M. 1971. The effect of diet on life-span, fecundity and flight potential of female Aedes taeniorhynchus adults. J. Med. Entomol 8:506–513.PubMedGoogle Scholar
  37. Nayar, J. K., and Saurman, D. M. 1975. The effects of nutrition on survival and fecundity in Florida mosquitoes. Part 1. Utilization of sugar for survival. J. Med. Entomol 12:92–98.PubMedGoogle Scholar
  38. Ômura, H., Honda, K., and Hayashi, N. 2000. Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J. Chem. Ecol 26:655–666.CrossRefGoogle Scholar
  39. Plepys, D., Ibarra, F., Francke, W., and Löfstedt, C. 2002a. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99:75–82.CrossRefGoogle Scholar
  40. Plepys, D., Ibarra, F., and Löfstedt, C. 2002b. Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99:69–74.CrossRefGoogle Scholar
  41. Raguso, R. A., and Light, D. M. 1998. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green-leaf volatiles. Entomol. Exp. Appl 86:287–293.CrossRefGoogle Scholar
  42. Raguso, R. A., and Pichersky, E. 1999. A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biol 14:95–120.CrossRefGoogle Scholar
  43. Raguso, R. A., Light, D. M., and Pickersky, E. 1996. Electroantennogram responses of Hyles lineata (Sphingidae: Lepidoptera) to volatile compounds from Clarkia breweri (Onagraceae) and other moth-pollinated flowers. J. Chem. Ecol 22:1735–1766.CrossRefGoogle Scholar
  44. Rojas, J. C. 1999. Electrophysiological and behavioural responses of the cabbage moth to plant volatiles. J. Chem. Ecol 25:1867–1883.CrossRefGoogle Scholar
  45. Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol 24:303–319.CrossRefGoogle Scholar
  46. Sandholm, H. A., and Price, R. D. 1962. Field observations on the nectar feeding habits of some Minnesota mosquitoes. Mosq. News 22:346–349.Google Scholar
  47. Schütz, S., Weißbecker, B., Koch, U. T., and Hummel, H. E. 1999. Detection of volatiles released by diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosens. Bioelectron 14:221–228.CrossRefGoogle Scholar
  48. Statsoft, Inc. 2004. STATISTICA for Windows Version 7. Scholar
  49. Stoutamire, W. P. 1968. Mosquito pollination of Habenaria obtusata (Orchidaceae). Mich. Bot 7:203–212.Google Scholar
  50. Svensson, G. P., Hickman, M. O., Bartram, S., Boland, W., Pellmyr, O., and Raguso, R. A. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am. J. Bot 92:1624–1631.Google Scholar
  51. Tollsten, L., and Bergström, G. 1993. Fragrance chemotypes of Platanthera (Orchidaceae): The result of adaptation to pollinating moths. Nord. J. Bot 13:607–613.CrossRefGoogle Scholar
  52. Vargo, A. M., and Foster, W. A. 1982. Responsiveness of female Aedes aegypti (Diptera, Culicidae) to flower extracts. J. Med. Entomol 19:710–718.Google Scholar
  53. Whitten, W. M., and Williams, N. H. 1992. Floral fragrances of Stanhopea (Orchidaceae). Lindleyana 7:130–153.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Umma Salma Jhumur
    • 1
    Email author
  • Stefan Dötterl
    • 1
  • Andreas Jürgens
    • 2
  1. 1.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  2. 2.School of Botany and ZoologyUniversity of NatalPietermaritzburgSouth Africa

Personalised recommendations