Skip to main content
Log in

Variation in Herbivore and Methyl Jasmonate-Induced Volatiles Among Genetic Lines of Datura wrightii

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many plant species produce volatile organic compounds after being damaged by herbivores. The production of volatiles also may be induced by exposing plants to the plant hormone, jasmonic acid, or its volatile ester, methyl jasmonate. This study addresses the induction of the production volatile organic compounds among genetic lines of Datura wrightii. Within populations, some plants produce glandular trichomes, whereas others produce nonglandular trichomes, and trichome phenotype is controlled by a single dominant gene. Glandular trichomes not only confer resistance to some herbivorous insects, but they also inhibit many natural enemies of those herbivores. Because of the potential benefit of natural enemies that use volatile cues to find individuals of the non-glandular phenotype, it is reasonable to ask if plants of D. wrightii that differ in trichome morphology might produce different blends of volatile compounds. Volatile compounds were collected from eight genetic lines of plants that had been backcrossed for three generations. Volatiles were collected from pairs of sibling plants before and after insect damage or treatment with methyl jasmonate. Within each pair, one sib expressed glandular trichomes and the other expressed nonglandular trichomes. Overall, plants produced an array of at least 17 compounds, most of which were sesquiterpenes. Total production of volatiles increased from 3.9- to 16.2-fold among genetic lines after insect damage and from 3.6- to 32-fold in plants treated with methyl jasmonate. The most abundant compound was (E)-β-caryophyllene. This single compound comprised from 17 to 59% of the volatiles from insect-damaged plants and from 24 to 88% of the volatiles from plants treated with methyl jasmonate, depending upon genetic line. The production of (E)-β-caryophyllene by the original male parents of the eight genetic lines was significantly related to the mean production of their third-generation backcross progeny indicating that the variation in the production of (E)-β-caryophyllene was inherited. Blends did not differ qualitatively or quantitatively between sibs expressing glandular or nonglandular trichomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arimura, G. I., Kost, C., and Boland, W. 2005. Herbivore-induced, indirect plant defenses. Biochem. Biophy. Acta 1734::1–111.

    Google Scholar 

  • Boughton, A. J., Hoover, K., and Felton, G. W. 2005. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J. Chem. Ecol. 31:2211–2216.

    Article  PubMed  CAS  Google Scholar 

  • Bukovinszky, T., Gols, R., Postumus, M. A., Vet, L. E. M., and van Lenteren, J. C. 2005. Variation in plant volatiles and attraction of the parasitoid Diadgema semiclausum (Helen). J. Chem. Ecol. 31:461–480.

    Article  PubMed  CAS  Google Scholar 

  • D’Alessandro, M., and Turlings, T. C. J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32.

    Article  PubMed  CAS  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • Degen, T., Dillmann, C., Marion-Poll, F., and Turlings, T. C. J. 2004. High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol. 135:1928–1938.

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt, D. C., and Lincoln, D. E. 2006. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J. Chem. Ecol. 32:725–743.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., Gols, R., Ludeking, D., and Posthumus, M. A. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907–1922.

    Article  CAS  Google Scholar 

  • Dudareva, N., Negre, F., Nagegowda, D., and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant. Sci. 25:417–440.

    Article  CAS  Google Scholar 

  • Fraser, A. M., Mechaber, W. L., and Hildebrand, J. G. 2003. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J. Chem. Ecol. 29:1813–1833.

    Article  PubMed  CAS  Google Scholar 

  • Gassmann, A. J., and Hare, J. D. 2005. Indirect cost of a defensive trait:variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia 144:62–71.

    Article  PubMed  Google Scholar 

  • Glawe, G. A., Zavala, J. A., Kessler, A., van Dam, N. M., and Baldwin, I. T. 2003. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata. Ecology 84:79–90.

    Article  Google Scholar 

  • Gouinguene, S., Degen, T., and Turlings, T. C. J. 2001. Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (Teosinte). Chemoecology 11:9–16.

    Article  CAS  Google Scholar 

  • Halitschke, R., Kessler, A., Kahl, J., Lorenz, A., and Baldwin, I. T. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124:408–417.

    Article  Google Scholar 

  • Hare, J. D., and Elle, E. 2001. Geographic variation in the frequencies of trichome phenotypes of Datura wrightii and correlation with annual water deficit. Madrono 48:33–37.

    Google Scholar 

  • Hare, J. D., and Elle, E. 2002. Variable impact of diverse insect herbivores on dimorphic Datura wrightii. Ecology 83:2711–2720.

    Google Scholar 

  • Hare, J. D., and Elle, E. 2004. Survival and seed production of sticky and velvety Datura wrightii in the field: A five-year study. Ecology 85:615–622.

    Article  Google Scholar 

  • Hare, J. D., and Walling, L. L. 2006. Constitutive and jasmonate-inducible traits of Datura wrightii. J. Chem. Ecol. 32:29–47.

    Article  PubMed  CAS  Google Scholar 

  • Hoballah, M. E. F., Tamo, C., and Turlings, T. C. J. 2002. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris:Is quality or quantity important? J. Chem. Ecol. 28:951–968.

    Article  PubMed  CAS  Google Scholar 

  • Hoballah, M. E. F., Kollner, T. G., Degenhardt, J., and Turlings, T. C. J. 2004. Costs of induced volatile production in maize. Oikos 105:168–180.

    Article  Google Scholar 

  • Hopke, J., Donath, J., Blechert, S., and Boland, W. 1994. Herbivore-induced volatiles - the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett. 352:146–150.

    Article  PubMed  CAS  Google Scholar 

  • James, D. G. 2002. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ. Entomol. 32:977–982.

    Article  Google Scholar 

  • Karban, R., and Baldwin, I. T. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Kessler, A., and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, A., and Baldwin, I. T. 2002. Manduca quinquemaculata’s optimization of intra-plant oviposition to predation, food quality, and thermal constraints. Ecology 83:2346–2354.

    Article  Google Scholar 

  • Krips, O. E., Willems, P. E. L., Gols, R., Posthumus, M. A., Gort, G., and Dicke, M. 2001. Comparison of cultivars of ornamental crop Gerbera jamesonii on production of spider mite-induced volatiles, and their attractiveness to the predator Phytoseiulus persimilis. J. Chem. Ecol. 27:1355–1372.

    Article  PubMed  CAS  Google Scholar 

  • Lou, Y. G., Hua, X. Y., Turlings, T. C. J., Cheng, J. A., Chen, X. X., and Ye, G. Y. 2006. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the Field. J. Chem. Ecol. 32:2375–2387.

    Article  PubMed  CAS  Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1227.

    Article  CAS  Google Scholar 

  • Mira, A., and Bernays, E. E. 2002. Trade-offs in host use by Manduca sexta: Plant characters vs. natural enemies. Oikos 97:387–397.

    Article  Google Scholar 

  • Nissinen, A., Ibrahim, M., Kainulainen, P., Tiilikkala, K., and Holopainen, J. K. 2005. Influence of carrot psyllid (Trioza Apicalis) feeding or exogenous limonene or methyl jasmonate treatment on composition of carrot (Daucus carota) leaf essential oil and headspace volatiles. J. Agric. Food Chem. 53:8631–8638.

    Google Scholar 

  • Ozawa, R., Shimoda, T., Kawaguchi, M., Arimura, G., Horiuchi, J., Nishioka, T., and Takabayashi, J. 2000. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J. Plant Res. 113:427–433.

    Article  Google Scholar 

  • Puttler, B. 1966. Notes on two parasites attacking a Lema sp. (Coleoptera:Chrysomelidae). J. Econ. Entomol. 59:475–476.

    Google Scholar 

  • Rodriguez-Saona, C., Poland, T. M., Miller, J. R., Stelinski, L. L., Grant, G. G., De Groot, P., Buchan, L., and Macdonald, L. 2006. Behavioral and electrophysiological responses of the emerald ash borer, Agrilus planipennis, to induced volatiles of Manchurian ash, Fraxinus mandshurica. Chemoecology 16:75–86.

    Article  CAS  Google Scholar 

  • SAS, Institute 2000. SAS for Windows. Version 8. SAS Institute, Cary, North Carolina, USA.

    Google Scholar 

  • Schmelz, E. A., Alborn H. T., and Tumlinson, J. H. 2001. The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179.

    Article  PubMed  CAS  Google Scholar 

  • Scheiner, S. M. 2001. MANOVA:Multiple response variables and multispecies interactions, pp. 99–155, in S. M. Scheiner, and J. Gurevitch (eds.). Design and Analysis of Ecological Experiments 2nd, Oxford University Press, New York.

    Google Scholar 

  • Scutareanu, P., Bruin, J., Posthumus, M. A., and Drukker, B. 2003. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees. Chemoecology 13:63–74.

    CAS  Google Scholar 

  • Stewart-Jones, A., and Poppy, G. M. 2006. Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis. J. Chem. Ecol. 32:845–864.

    Article  PubMed  CAS  Google Scholar 

  • Thaler, J. S. 2002. Jasmonate-deficient plants have reduced direct and indirect defenses against herbivores. Ecol. Lett. 5:764–774.

    Article  Google Scholar 

  • Van Dam, N. M., and Baldwin, I. T. 2003. Heritability of a quantitative and qualitative protease inhibitor polymorphism in Nicotiana attenuata. Plant Biol. 5:179–185.

    Article  Google Scholar 

  • Van Dam, N. M., and Hare, J. D. 1998a. Biological activity of Datura wrightii glandular trichome exudate against Manduca sexta larvae. J. Chem. Ecol. 24:1529–1549.

    Article  Google Scholar 

  • Van Dam, N. M., and Hare, J. D. 1998b. Differences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightii. Ecol. Entomol. 23:22–32.

    Article  Google Scholar 

  • Van Dam, N. M., Hare, J. D., and Elle, E. 1999. Inheritance and distribution of trichome phenotypes in Datura wrightii. J. Heredity 90:220–227.

    Article  Google Scholar 

  • Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    PubMed  CAS  Google Scholar 

  • Yan, Z. G., and Wang, C. Z. 2006. Similar attractiveness of maize volatiles induced by Helicoverpa armigera and Pseudaletia separata to the generalist parasitoid Campoletis chlorideae. Entomol. Exp. Appl. 118:87–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank M. Haight and L. Christensen for assistance in the laboratory, J. G. Millar for assistance with the GC-MS analyses, and J. G. Millar and J. D. Allison for comments on a previous draft of the manuscript. This work was supported by the National Science Foundation under Grant no DEB 0414181 to J. D. Hare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Daniel Hare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, J.D. Variation in Herbivore and Methyl Jasmonate-Induced Volatiles Among Genetic Lines of Datura wrightii . J Chem Ecol 33, 2028–2043 (2007). https://doi.org/10.1007/s10886-007-9375-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9375-1

Keywords

Navigation