Skip to main content

Antifungal Effects of Volatile Compounds from Black Zira (Bunium persicum) and Other Spices and Herbs

Abstract

The dish pack method, which measures growth inhibition or promotion effects of volatile compounds on germinating seeds, was applied to measure the antifungal effects of 52 dried samples of spices and herbs against a soil-borne phytopathogenic fungus, Fusarium oxysporum. Black zira showed the strongest effect, followed by cumin and cardamom. Headspace sampling and gas chromatography–mass spectrometry analysis of black zira identified seven volatile compounds, γ-terpinene, limonene, p-cymene, β-pinene, α-pinene, cuminaldehyde, and myrcene. Among these, cuminaldehyde and p-cymene showed the strongest antifungal activities against F. oxysporum, suggesting roles in the antifungal activity of black zira. The same compounds also showed antifungal activities against another soil-borne phytopathogenic fungus, Verticillium dahliae, and foliar phytopathogenic fungi, Botrytis cinerea and Alternaria mali. The total activity calculated from the concentration of cuminaldehyde contained in black zira and its EC50 against F. oxysporum demonstrated that cuminaldehyde is the main antifungal compound detected in black zira.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Archbold, D. D., Hamilton-kemp, T. R., Barth, M. M., and Langlois, B. E. 1997. Identifying natural volatile compounds that control gray mold (Botrytis cinerea) during postharvest storage of strawberry, blackberry, and grape. J. Agric. Food. Chem. 45:4032–4037.

    Article  CAS  Google Scholar 

  • Baser, K. H. C., Ozek, T., Abduganiev, B. E., Abdullaev, U. A., and Aripov, K. N. 1997. Composition of the essential oil of Bunium Persicum (Boiss.) B. Fredtsch. from Tajikistan. J. Essent. Oil. Res. 9:597–598.

    CAS  Google Scholar 

  • Endo, N., Abe, M., Sekine, T., and Matsuda, K. 2004. Feeding stimulants of Solanaceae-feeding lady beetle, Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) from potato leaves. Appl. Entomol. Zool. 39:411–416.

    Article  CAS  Google Scholar 

  • Finney, D. J. 1971. Probit Analysis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Fujii, Y. and Hiradate, S. 2005. A critical survey of allelochemicals in action—the importance of total activity and the weed suppression equation, pp. 73–76, in Proceedings of the Fourth World Congress on Allelopathy.

  • Fujii, Y., Matsuyama, M., Hiradate, S., and Shimozawa, H. 2005. Dish Pack Method: A new bioassay for volatile allelopathy, pp. 493–497, in Proceedings of the Fourth World Congress on Allelopathy.

  • Hamilton-kemp, T. R., Mccracken, C. T. Jr., Loughrin, J. H., Andersen, R. A., and Hildebrand, D. F. 1992. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J. Chem. Ecol. 18:1083–1091.

    Article  CAS  Google Scholar 

  • Harper, J. L. 1977. Mechanisms of interaction between species, Population Biology of Plants. 347–381, in Harper J. L. (ed.). Academic, New York.

    Google Scholar 

  • Hiradate, S., Morita, S., Sugie, H., Fuji, Y., and Harada, J. 2004. Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry 65:731–739.

    PubMed  Article  CAS  Google Scholar 

  • Hiradate, S. 2006. Isolation strategies for finding bioactive compounds: Specific activity vs. total activity, Natural Products for Pest Management, ACS Symposium Series no. 927. 113–126, in A. M. Rimando, and S. O. Duke (eds.). Oxford University Press, Oxford.

    Google Scholar 

  • Hsiao, T. H. 1985. Feeding behavior, Comprehensive Insect Physiology, Biochemistry and Pharmacology. 471–512, in G. A. Kerkut, and L. I. Gilbert (eds.). Pergamon, Oxford.

    Google Scholar 

  • Karamanoli, K., Vokou, D., Menkissoglu, U., and Constantinidou, H.-I. 2000. Bacterial colonization of phyllosphere of Mediterranean aromatic plants. J. Chem. Ecol. 26:2035–2048.

    Article  CAS  Google Scholar 

  • Karamanoli, K., Menkissoglu-spiroudi, U., Bosabalidis, A. M., Vokou, D., and Constantinidou, H.-I. A. 2005. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15:59–67.

    Article  Google Scholar 

  • Kong, C., Hu, F., Xu, T., and Lu, Y. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. J. Chem. Ecol 25:2347–2356.

    Article  CAS  Google Scholar 

  • Letessier, M. P., Svoboda, K. P., and Walters, D. R. 2001. Antifungal activity of the essential oil of hyssop (Hyssopus officinalis). J. Phytopathol. 149:673–678.

    Article  CAS  Google Scholar 

  • Muller-riebau, F., Berger, B., and Yegen, O. 1995. Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food. Chem. 43:2262–2266.

    Article  Google Scholar 

  • Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell. 8:1821–1831.

    PubMed  Article  CAS  Google Scholar 

  • Oxenham, S. K., Svoboda, K. P., and Walters, D. R. 2005. Antifungal activity of the essential oil of basil (Ocimum basilicum). J. Phytopathol. 153:174–180.

    Article  CAS  Google Scholar 

  • Pellmyr, O., and Thien, L. B. 1986. Insect reproduction and floral fragrances: Keys to the evolution of the angiosperms. Taxon 35:76–85.

    Article  Google Scholar 

  • Reuveni, R., Fleischer, A., and Putievsky, E. 1984. Fungistatic activity of essential oils from Ocimum basilicum chemotypes. Phytopath. Z. 110:20–22.

    CAS  Google Scholar 

  • Rice, E. L. 1984. Manipulated ecosystems: Roles of allelopathy in Agriculture. 28–12Academic, New York.

    Google Scholar 

  • Soylu, E. M., Soylu, S., and Kurt, S. 2006. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128.

    PubMed  Article  CAS  Google Scholar 

  • Shibuya, T. 1990. Emission rate and atmospheric concentration of volatile substances from plants at agricultural area. Nogyogijutsu 45:317–321(in Japanese).

    Google Scholar 

  • Shimoni, M., Putievsky, E., Ravid, U., and Reuveni, R. 1993. Antifungal activity of volatile fractions of essential oils from four aromatic wild plants in Israel. J. Chem. Ecol. 19:1129–1133.

    Article  CAS  Google Scholar 

  • Takehara, T., Hanzawa, S., Funabara, M., Nakaho, K., and Nakagawa, A. 2004. Control of soil borne pathogens using allelopathic plants to lower redox potential of soil. Phytopathology 94(Supp1):101.

    Google Scholar 

  • Vokou, D., and Liotiri, S. 1999. Stimulation of soil microbial activity by essential oils. Chemoecology 9:41–45.

    Article  CAS  Google Scholar 

  • Wilson, C. L., Franklin, J. D., and Otto, B. E. 1987. Fruits volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis 71:316–319.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Fellowship of the Ministry of Agriculture, Forestry, and Fisheries of Japan. We thank Ms. Pariasca for her critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Fujii.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekine, T., Sugano, M., Majid, A. et al. Antifungal Effects of Volatile Compounds from Black Zira (Bunium persicum) and Other Spices and Herbs. J Chem Ecol 33, 2123–2132 (2007). https://doi.org/10.1007/s10886-007-9374-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9374-2

Keywords

  • Spices
  • Herbs
  • Volatile compounds
  • Bunium persicum
  • Cuminaldehyde
  • Headspace
  • Dish pack method
  • Antifungal activity
  • Mycelial growth
  • Total activity