Journal of Chemical Ecology

, Volume 33, Issue 11, pp 2123–2132 | Cite as

Antifungal Effects of Volatile Compounds from Black Zira (Bunium persicum) and Other Spices and Herbs

  • Takayuki Sekine
  • Mami Sugano
  • Azizi Majid
  • Yoshiharu FujiiEmail author


The dish pack method, which measures growth inhibition or promotion effects of volatile compounds on germinating seeds, was applied to measure the antifungal effects of 52 dried samples of spices and herbs against a soil-borne phytopathogenic fungus, Fusarium oxysporum. Black zira showed the strongest effect, followed by cumin and cardamom. Headspace sampling and gas chromatography–mass spectrometry analysis of black zira identified seven volatile compounds, γ-terpinene, limonene, p-cymene, β-pinene, α-pinene, cuminaldehyde, and myrcene. Among these, cuminaldehyde and p-cymene showed the strongest antifungal activities against F. oxysporum, suggesting roles in the antifungal activity of black zira. The same compounds also showed antifungal activities against another soil-borne phytopathogenic fungus, Verticillium dahliae, and foliar phytopathogenic fungi, Botrytis cinerea and Alternaria mali. The total activity calculated from the concentration of cuminaldehyde contained in black zira and its EC50 against F. oxysporum demonstrated that cuminaldehyde is the main antifungal compound detected in black zira.


Spices Herbs Volatile compounds Bunium persicum Cuminaldehyde Headspace Dish pack method Antifungal activity Mycelial growth Total activity 



This work was supported by a Research Fellowship of the Ministry of Agriculture, Forestry, and Fisheries of Japan. We thank Ms. Pariasca for her critical reading of the manuscript.


  1. Archbold, D. D., Hamilton-kemp, T. R., Barth, M. M., and Langlois, B. E. 1997. Identifying natural volatile compounds that control gray mold (Botrytis cinerea) during postharvest storage of strawberry, blackberry, and grape. J. Agric. Food. Chem. 45:4032–4037.CrossRefGoogle Scholar
  2. Baser, K. H. C., Ozek, T., Abduganiev, B. E., Abdullaev, U. A., and Aripov, K. N. 1997. Composition of the essential oil of Bunium Persicum (Boiss.) B. Fredtsch. from Tajikistan. J. Essent. Oil. Res. 9:597–598.Google Scholar
  3. Endo, N., Abe, M., Sekine, T., and Matsuda, K. 2004. Feeding stimulants of Solanaceae-feeding lady beetle, Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) from potato leaves. Appl. Entomol. Zool. 39:411–416.CrossRefGoogle Scholar
  4. Finney, D. J. 1971. Probit Analysis. Cambridge University Press, Cambridge, UK.Google Scholar
  5. Fujii, Y. and Hiradate, S. 2005. A critical survey of allelochemicals in action—the importance of total activity and the weed suppression equation, pp. 73–76, in Proceedings of the Fourth World Congress on Allelopathy.Google Scholar
  6. Fujii, Y., Matsuyama, M., Hiradate, S., and Shimozawa, H. 2005. Dish Pack Method: A new bioassay for volatile allelopathy, pp. 493–497, in Proceedings of the Fourth World Congress on Allelopathy.Google Scholar
  7. Hamilton-kemp, T. R., Mccracken, C. T. Jr., Loughrin, J. H., Andersen, R. A., and Hildebrand, D. F. 1992. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J. Chem. Ecol. 18:1083–1091.CrossRefGoogle Scholar
  8. Harper, J. L. 1977. Mechanisms of interaction between species, Population Biology of Plants. 347–381, in Harper J. L. (ed.). Academic, New York.Google Scholar
  9. Hiradate, S., Morita, S., Sugie, H., Fuji, Y., and Harada, J. 2004. Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry 65:731–739.PubMedCrossRefGoogle Scholar
  10. Hiradate, S. 2006. Isolation strategies for finding bioactive compounds: Specific activity vs. total activity, Natural Products for Pest Management, ACS Symposium Series no. 927. 113–126, in A. M. Rimando, and S. O. Duke (eds.). Oxford University Press, Oxford.Google Scholar
  11. Hsiao, T. H. 1985. Feeding behavior, Comprehensive Insect Physiology, Biochemistry and Pharmacology. 471–512, in G. A. Kerkut, and L. I. Gilbert (eds.). Pergamon, Oxford.Google Scholar
  12. Karamanoli, K., Vokou, D., Menkissoglu, U., and Constantinidou, H.-I. 2000. Bacterial colonization of phyllosphere of Mediterranean aromatic plants. J. Chem. Ecol. 26:2035–2048.CrossRefGoogle Scholar
  13. Karamanoli, K., Menkissoglu-spiroudi, U., Bosabalidis, A. M., Vokou, D., and Constantinidou, H.-I. A. 2005. Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15:59–67.CrossRefGoogle Scholar
  14. Kong, C., Hu, F., Xu, T., and Lu, Y. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. J. Chem. Ecol 25:2347–2356.CrossRefGoogle Scholar
  15. Letessier, M. P., Svoboda, K. P., and Walters, D. R. 2001. Antifungal activity of the essential oil of hyssop (Hyssopus officinalis). J. Phytopathol. 149:673–678.CrossRefGoogle Scholar
  16. Muller-riebau, F., Berger, B., and Yegen, O. 1995. Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. J. Agric. Food. Chem. 43:2262–2266.CrossRefGoogle Scholar
  17. Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell. 8:1821–1831.PubMedCrossRefGoogle Scholar
  18. Oxenham, S. K., Svoboda, K. P., and Walters, D. R. 2005. Antifungal activity of the essential oil of basil (Ocimum basilicum). J. Phytopathol. 153:174–180.CrossRefGoogle Scholar
  19. Pellmyr, O., and Thien, L. B. 1986. Insect reproduction and floral fragrances: Keys to the evolution of the angiosperms. Taxon 35:76–85.CrossRefGoogle Scholar
  20. Reuveni, R., Fleischer, A., and Putievsky, E. 1984. Fungistatic activity of essential oils from Ocimum basilicum chemotypes. Phytopath. Z. 110:20–22.Google Scholar
  21. Rice, E. L. 1984. Manipulated ecosystems: Roles of allelopathy in Agriculture. 28–12Academic, New York.Google Scholar
  22. Soylu, E. M., Soylu, S., and Kurt, S. 2006. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia 161:119–128.PubMedCrossRefGoogle Scholar
  23. Shibuya, T. 1990. Emission rate and atmospheric concentration of volatile substances from plants at agricultural area. Nogyogijutsu 45:317–321(in Japanese).Google Scholar
  24. Shimoni, M., Putievsky, E., Ravid, U., and Reuveni, R. 1993. Antifungal activity of volatile fractions of essential oils from four aromatic wild plants in Israel. J. Chem. Ecol. 19:1129–1133.CrossRefGoogle Scholar
  25. Takehara, T., Hanzawa, S., Funabara, M., Nakaho, K., and Nakagawa, A. 2004. Control of soil borne pathogens using allelopathic plants to lower redox potential of soil. Phytopathology 94(Supp1):101.Google Scholar
  26. Vokou, D., and Liotiri, S. 1999. Stimulation of soil microbial activity by essential oils. Chemoecology 9:41–45.CrossRefGoogle Scholar
  27. Wilson, C. L., Franklin, J. D., and Otto, B. E. 1987. Fruits volatiles inhibitory to Monilinia fructicola and Botrytis cinerea. Plant Dis 71:316–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Takayuki Sekine
    • 1
  • Mami Sugano
    • 2
  • Azizi Majid
    • 3
  • Yoshiharu Fujii
    • 2
    Email author
  1. 1.Miyagi Prefectural Agriculture and Horticulture Research CenterNatoriJapan
  2. 2.National Institute for Agro-Environment ScienceTsukubaJapan
  3. 3.Horticultural Department, Agricultural FacultyFerdowsi UniversityMashhadIran

Personalised recommendations