Antimicrobial Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum

Abstract

Ethyl acetate extracts from heartwood of seven western conifer trees and individual volatile compounds in the extracts were tested for antimicrobial activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity, followed by yellow-cedar, western juniper, and Port-Orford-cedar with moderate activity, and no activity for Douglas-fir and redwood extracts. Chemical composition of the extracts varied both qualitatively and quantitatively among the species with a total of 37 compounds identified by mass spectrometry. Of the 13 individual heartwood compounds bioassayed, three showed strong activity with a Log10 EC50 less than or equal to 1.0 ppm (hinokitiol, thymoquinone, and nootkatin), three expressed moderate activity ranging from 1.0–2.0 ppm (nootkatol, carvacrol, and valencene-11,12-diol), four compounds had weak activity at 2.0–3.0 ppm [α-terpineol, valencene-13-ol, (+)-β-cedrene, (−)-thujopsene], and three had no activity [(+)-cedrol, δ-cadinene, and methyl carvacrol]. All of the most active compounds contained a free hydroxyl group, except thymoquinone. The importance of a free hydroxyl was demonstrated by the tremendous difference in activity between carvacrol (Log10 EC50 1.81 ± 0.08 ppm) and methyl carvacrol (Log10 EC50 >3.0 ppm). A field trial in California, showed that heartwood chips from redcedar placed on the forest floor for 4 months under Umbellularia californica (California bay laurel) with symptoms of P. ramorum leaf blight significantly limited the accumulation of P. ramorum DNA in the litter layer, compared with heartwood chips from redwood.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th Ed. Allured Publishing Corp., Carol Stream, Illinois.

    Google Scholar 

  2. Ahn, Y-J., Lee, S-B., Lee, H-S., and Kim, G-H. 1998. Insecticidal and acaricidal activity of carvacrol and β-thujaplicine derived from Thujopsis dolabrata hondai sawdust. J. Chem. Ecol. 24:81–90.

    Article  CAS  Google Scholar 

  3. Arima, Y., Nakai, Y., Hayakawa, R., and Nishino, T. 2003. Antibacterial effect of β-thujaplicin on staphylococci isolated from atopic dermatitis: relationship between changes in the number of viable bacterial cells and clinical improvement in an eczematous lesion of atopic dermatitis. J. Antimicrob. Chemother. 51:113–122.

    PubMed  Article  CAS  Google Scholar 

  4. Barton, G. M., and Macdonald, B. F. 1971. The chemistry and utilization of western redcedar. Dept. Fisheries and Forestry, Can. For. Serv. Pub. No. 1023.

  5. Baya, M., Soulounganga, P., Gelhaye, E., and Gérardin, P. 2001. Fungicidal activity of β-thujaplicin analogues. Pest Manage. Sci. 57:833–838.

    Article  CAS  Google Scholar 

  6. Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Inter. J. Food Microbiol. 94:223–253.

  7. Chisty, M. M., Nargis, M., Inaba, T., Ishita, K., Osanai, A., and Kamiya, H. 2004. Transmission electron microscopy of Schistosoma mansoni cercariae treated with hinokitiol (β-thujaplicin), a compound for potential skin application against cercarial penetration. Tohoku J. Exp. Med. 202:63–67.

    PubMed  Article  CAS  Google Scholar 

  8. Cushman, J. H., and Meentemeyer, R. K. 2005. The importance of humans in the dispersal and spread of Phytophthora ramorum at local, landscape, and regional scales, pp. 161–162, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.

  9. Davidson, J. M., Wickland, A. C, Patterson, H. A., Falk, K. R., and Rizzo, D. M. 2005. Transmission of Phytophthora ramorum in mixed-evergreen forest in California. Phytopathology 95:587–596.

    Article  PubMed  Google Scholar 

  10. DeBell, J. D., Morrell, J. J., and Gartner, B. L. 1999. Within-stem variation in tropolone content and decay resistance of second-growth western redcedar. For. Sci. 45:101–107.

    Google Scholar 

  11. DeGroot, R. C., Woodward, B., and Hennon, P. E. 2000. Natural decay resistance of heartwood from dead, standing yellow-cedar trees: laboratory evaluations. For. Prod. J. 50:53–59.

    Google Scholar 

  12. Fallik, E., and Grinberg, S. 1992. Hinokitiol: a natural substance that controls postharvest diseases in eggplant and pepper fruits. Posthar. Biol. Technol. 2:137–144.

    Article  CAS  Google Scholar 

  13. Garbelotto, M., and Rizzo, D. M. 2005. A California-based chronological review (1995–2004) of research on Phytophthora ramorum, the causal agent of sudden oak death. Phytopathol. Mediterr. 44:1–17.

    Google Scholar 

  14. Goheen, E. M., Hansen, E., Kanaskie, A., Osterbauer, N., Parke, J., Pscheidt, J., and Chastagner, G. 2006a. Sudden oak death and Phytophthora ramorum. Oregon State University Extension Service, EM8877. Corvallis, OR.

  15. Goheen, E. M., Kanaskie, A., Parke, J., Roth, M., Osterbauer, N., and Trippe, A. 2006b. Applications of fungicides to protect four hosts from foliar infection by Phytophthora ramorum in Curry County, Oregon, pp. 513–514, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.

  16. Hansen, E. M., Parke, J. L., and Sutton, W. 2005. Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis. 89:63–70.

    Article  Google Scholar 

  17. Hayden, K., Ivors, K., Wilkinson, C., and Garbelotto, M. 2006. TaqMan chemistry for Phytopthora ramorum detection and quantification, with a comparison of diagnostic methods. Phytopathology 96:846–854.

    Article  CAS  PubMed  Google Scholar 

  18. Hennon, P. E., D’amore, D. V., Zeglen, S., and Grainger, M. 2005. Yellow-cedar decline in the north coast forest district of British Columbia. US Dept. Agric. For. Serv., Pacific Northwest Res. Sta. Res. Note PNW-RN-549.

  19. Hennon, P., D’amore, D., Wittwer, D., Johnson, A., Schaberg, P., Hawley, G., Beier, C., Sink, S., and Juday, G. 2007a. Climate warming, reduced snow, and freezing injury could explain the demise of yellow-cedar in southeast Alaska, USA. World Res. Rev. 18:427–450.

  20. Hennon, P. E., Hansen, E. M., and Shaw, C. G., III. 1990. Dynamics of decline and mortality of Chamaecyparis nootkatensis in southeast Alaska. Can. J. Bot. 68:651–662.

    Google Scholar 

  21. Hennon, P. E., Woodward, B., and Lebow, P. 2007b. Deterioration of wood from live and dead Alaska yellow-cedar in contact with soil. For. Prod. J. 57 (Forest Products Society).

  22. Heungens, K., De Dobbelaere, I., and Maes, M. 2006. Fungicide control of Phytophthora ramorum on rhododendron, pp. 241–257, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.

  23. Inamori, Y., Shinohara, S., Tsujibo, H., Okabe, T., Morita, Y., Sakagami, Y., Kumeda, Y., and Ishida, N. 1999. Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsis dolbrata S. and Z. hondai MAK. Biol. Pharm. Bull. 22:990–993.

    PubMed  CAS  Google Scholar 

  24. Inamori, Y., Tsujibo, H., Ohishi, H., Ishii, F., Mizugaki, M., Aso, H., and Ishida, N. 1993. Cytotoxic effect of hinokitiol and tropolone on the growth of mammalian cells and on blastogenesis of mouse splenic T cells. Biol. Pharm. Bull. 16: 521–523.

    PubMed  CAS  Google Scholar 

  25. Ivors, K., Garbelotto, M., Vries, I. D. E., Ruyter-Spira, C., Hekkert, B. T. E., Rosenzweig, N., and Bonants, P. 2006. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol. Ecol. 15:1493–1505.

    PubMed  Article  CAS  Google Scholar 

  26. Johnson, H. A., Rogers, L. L., Alkire, M. L., Mccloud, T. G., and Mclaughlin, J. L. 1998. Bioactive monoterpenes from Monarda fistulosa (Lamiaceae). Nat. Prod. Lett. 11:241–250.

    CAS  Google Scholar 

  27. Johnston, W. H., Karchesy, J. J., Constantine, G. H., and Craig, A. M. 2001. Antimicrobial activity of some pacific northwest woods against anaerobic bacteria and yeast. Phytother. Res. 15:586–588.

    PubMed  Article  CAS  Google Scholar 

  28. Kelsey, R. G., Hennon, P. E., Huso, M., and Karchesy, J. J. 2005. Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska. J. Chem. Ecol. 31:2653–2670.

    PubMed  Article  CAS  Google Scholar 

  29. Khasawneh, M. A. 2003. Natural and semi-synthetic compounds with biocidal activity against arthropods of public health importance. Ph.D. dissertation. Oregon State University, Corvallis.

  30. Kuhajek, J. M., Jeffers, S. N., Slattery, M., and Wedge, D. E. 2003. A rapid micobioassay for discovery of novel fungicides for Phytophthora spp. Phytopathology 93:46–53.

    Article  CAS  PubMed  Google Scholar 

  31. Linderman, R. G., and Davis, E. A. 2006. Evaluation of chemical and biological agents for control of Phytophthora species on intact plants or detached leaves of rhododendron and lilac, pp. 265–267, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.

  32. Little, D. P. 2007. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Syst. Bot. 31:461–480.

    Article  Google Scholar 

  33. Little, D. P., Schwarzbach, A. E., Adams, R. P., and Hsieh, C-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). Amer. J. Bot. 91:1872–1881.

    CAS  Google Scholar 

  34. Manter, D. K., Karchesy, J. J., and Kelsey, R. G. 2006. The sporicidal activity of yellow-cedar heartwood, essential oil and wood constituents toward Phytophthora ramorum in culture. For. Pathol. 36:297–308.

    Google Scholar 

  35. McWilliams, M. G. 2000. Port-Orford-cedar and Phytophthora lateralis: Grafting and heritability of resistance in the host and variation in the pathogen. Ph.D. dissertation, Oregon State University. Corvallis, OR.

  36. Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z., and Spiegel, Y. 2000. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90:710–715.

    Article  CAS  PubMed  Google Scholar 

  37. Rennerfelt, E., and Nacht, G. 1955. The fungicidal activity of some constituents from heartwood of conifers. Sv. Bot. Tidskr. 49:419–432.

    Google Scholar 

  38. Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., and Koike, S. T. 2002a. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86:205–214.

    Article  Google Scholar 

  39. Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., and Koike, S. T. 2002b. Phytophthora ramorum and sudden oak death in California: I. Host relationships, pp. 733–740, in R. Standiford, D. McCreary, K. L. Purcell (eds.). Proceedings of the 5th Symposium on Oak Woodlands: Oaks in California’s Changing Landscape. US Dep. Agric. For. Serv. Gen. Tech. Rep. PSW-GTR-184.

  40. Rizzo, D. M., Garbelotto, M., and Hansen, E. M. 2005. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 43:309–335.

    PubMed  Article  CAS  Google Scholar 

  41. Roff, J. W., and Atkinson, J. M. 1954. Toxicity tests of a water-soluble phenolic fraction (thujaplicin-free) of western red cedar. Can. J. Bot. 32:308–309.

    CAS  Article  Google Scholar 

  42. Rudman, P. 1962. The causes of natural durability in timber IX. The antifungal activity of heartwood extractives in wood substrate. Holzforschung 16:74–77.

    CAS  Google Scholar 

  43. Rudman, P. 1963. The causes of natural durability in timber. Part XI. Some tests on the fungi toxicity of wood extractives and related compounds. Holzforschung 17:54–57.

    CAS  Article  Google Scholar 

  44. Scheffer, T., and Cowling, E. B. 1966. Natural resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 4:147–170.

    Article  CAS  Google Scholar 

  45. Schena, L., Hughes, K. J. D., and Cooke, D. E. L. 2006. Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Mol. Plant Pathol. 7:365–379.

    Article  CAS  PubMed  Google Scholar 

  46. Taylor, A. M. 2004. Heartwood variation in Douglas-fir and western redcedar. Ph.D. dissertation, Oregon State University. Corvallis, OR.

  47. Tjosvold, S. A., Chambers, D. L., and Koike, S. 2006. Evaluation of fungicides for the control of Phytophthora ramorum infecting Rhododendron, Camellia, Viburnum, and Pieris, pp. 269–271, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.

  48. Trust, R. T., and Coombs, R. W. 1973. Antibacterial activity of β-thujaplicin. Can. J. Microbiol. 19:1341–1346.

    PubMed  CAS  Article  Google Scholar 

  49. Turner, J., Jennings, P., Mcdonough, S., Liddell, D., and Stonehouse, J. 2006. Chemical control of Phytophthora ramorum causing foliar disease in hardy nursery stock in the United Kingdom, pp. 273–274, in S. J. Frankel, P. J. Shea, M. I. Haverty (tech. coord.). Proceedings of the Sudden Oak Death Second Science Symposium: The State of Our Knowledge. US Dept. Agric. For. Serv. Gen. Tech Rep. PSW-GTR-196.

  50. Ultee, A., Bennik, M. H. J., and Moezelaar, R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68:1561–1568.

    PubMed  Article  CAS  Google Scholar 

  51. Voda, K., Boh, B., Vrtačnik, M., and Pohleven, F. 2003. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Inter. Biodeter. Biodegra. 51:51–59.

    Article  CAS  Google Scholar 

  52. Werres, S. and De Merlier, D. 2003. First detection of Phytophthora ramorum mating type A2 in Europe. Plant Dis. 87:1266.

    Article  Google Scholar 

  53. Xioung, Y. 2000. Essential oil components of Alaska cedar heartwood. Ms thesis. Oregon State University, Corvallis.

  54. Yamano, H., Yamazaki, T., Sato, K., Shiga, S., Hagiwara, T., Ouchi, K., and Kishimoto, T. 2005. In vitro inhibitory effects of hinokitiol on proliferation of Chlamydia trachomatis. Antimicrob. Agents Chemother. 49:2519–2521.

    Article  CAS  Google Scholar 

  55. Zavarin, E., and Anderson, A. B. 1955. Extractive components from incense-cedar heartwood (Libocedrus decurrens Torrey) II. Occurrence and synthesis of p-methoxythymol and p-methoxycarvacrol, two new phenolic compounds. J. Org. Chem. 20:443–447.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US Department of Agriculture, Forest Service, Pacific Southwest Research Station for funding and the Marin County Open Space District for a permit to work on the Rush Creek Preserve. We thank John Bannister, Ketchikan Wood Technology Center for samples of Alaska yellow-cedar, Gene Braber, USDA, Orleans Ranger District for the sample of Port-Orford-cedar, and Greg Jennings, Bureau of Land Management, Arcata, California Field Office for the sample of redwood. We are especially thankful to Dr. Everett Hansen at Oregon State University for providing the P. ramorum isolate and use of his laboratory facilities and to Lyndsay Frady for her assistance conducting the bioassays.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Manter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manter, D.K., Kelsey, R.G. & Karchesy, J.J. Antimicrobial Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum . J Chem Ecol 33, 2133–2147 (2007). https://doi.org/10.1007/s10886-007-9368-0

Download citation

Keywords

  • Sudden oak death
  • Fungicide
  • Tropolone
  • Monoterpene
  • Sesquiterpene