Skip to main content

Phenolic Chemistry of Coast Live Oak Response to Phytophthora ramorum Infection

Abstract

Since the mid 1990s, Phytophthora ramorum has been responsible for the widespread mortality of tanoaks, as well as several oak species throughout California and Oregon forests. However, not all trees die, even in areas with high disease pressure, suggesting that some trees may be resistant to the pathogen. In this study, the chemical basis of host resistance was investigated. Three field experiments were carried out in California between December 2004 and September 2005. The levels of nine phenolic compounds (gallic acid, catechin, tyrosol, a tyrosol derivative, ellagic acid, and four ellagic acid derivatives) extracted from the phloem of trees that had been either artificially inoculated with P. ramorum or trees putatively infected with P. ramorum (based on canker symptoms) were quantified by high-performance liquid chromatography (HPLC). Significant differences in phenolic profiles were found between phloem sampled from the active margins of cankers, healthy phloem from asymptomatic trees, and phloem sampled 60 cm away from canker sites, although the magnitude and direction of the responses was not consistent across all experiments. Concentrations of gallic acid, tyrosol, and ellagic acid showed the greatest differences in these different tissues, but varied considerably across treatments. Gallic acid and tyrosol were tested in in vitro bioassays and showed strong dose-dependent inhibitory effects against P. ramorum, P. cinnamomi, P. citricola, and P. citrophthora. These results suggest that phloem chemistry varies in response to pathogen infection in California coast live oak populations and that changes in phloem chemistry may be related to apparently resistant phenotypes observed in the field.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Barry, K. M., Davies, N. W., and Mohammed, C. L. 2001. Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by high performance liquid chromatography-electrospray ionisation mass spectrometry. Phytochem. Anal. 12:120–127.

    PubMed  Article  CAS  Google Scholar 

  • Bennett, R. and Wallsgrove, R. M. 1994. Tansley Review No. 72: Secondary metabolites in plant defense mechanisms. New Phytol. 127:617–633.

    Article  CAS  Google Scholar 

  • Blodgett, J. T., Eyles, A., and Bonello, P. 2007. Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiol. 27:511–517.

    PubMed  Google Scholar 

  • Bonello, P. and Blodgett, J. T. 2003. Pinus nigra–Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol. Mol. Plant Pathol. 63:249–261.

    Article  Google Scholar 

  • Brown, A. V. and Brasier, C. M. 2007. Colonization of tree xylem by Phytophthora ramorum, P. kernoviae and other Phytophthora species. Plant Pathol. 56:227–241.

    Article  Google Scholar 

  • Davidson, J. M., Werres, S., Garbelotto, M., Hansen, E. M., and Rizzo, D. M. 2003. Sudden oak death and associated diseases caused by Phytophthora ramorum. Plant Health Progress Online. DOI 10.1094/PHP-2003-0707-01-DG.

  • Davidson, J. M., Wickland, A. C., Patterson, H. A., Falk, K. R., and Rizzo, D. M. 2005. Transmission of Phytophthora ramorum in mixed-evergreen forest in California. Phytopathology 95:587–596.

    Article  PubMed  Google Scholar 

  • Del Rio, J. A., Baidez, A. G., Botia, J. M., and Ortuno, A. 2003. Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food Chem. 83:75–78.

    Article  CAS  Google Scholar 

  • De Simon, B. F., Sanz, M., Cadahia, E., Poveda, P., and Broto, M. 2006. Chemical characterization of oak heartwood from Spanish forests of Quercus pyrenaica (Wild.). Ellagitannins, low molecular weight phenolic, and volatile compounds. J. Agric. Food Chem. 54:8314–8321.

    Article  CAS  Google Scholar 

  • Dodd, R. S., Huberli, D., Douhovnikoff, V., Harnik, T. Y., Afzal-Rafii, Z., and Garbelotto, M. 2005. Is variation in susceptibility to Phytophthora ramorum correlated with population genetic structure in coast live oak (Quercus agrifolia)? New Phytol. 165:203–214.

    PubMed  Article  Google Scholar 

  • Evensen, P. C., Solheim, H., Hoiland, K., and Stenersen, J. 2000. Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. For. Pathol. 30:97–108.

    Google Scholar 

  • Eyles, A., Davies, N. W., Yuan, Z. Q., and Mohammed, C. 2003. Host responses to natural infection by Cytonaema sp. in the aerial bark of Eucalyptus globulus. For. Path. 33:317–331

    Article  Google Scholar 

  • Feucht, W. and Treutter, D. 1999. The role of flavan-3-ols in plant defense, pp. 307–338, in K. M. M. Dakshini and C. L. Foy (eds.). Principles and Practices in Plant Ecology: Allelochemical Interactions. CRC, Boca Raton.

    Google Scholar 

  • Field, J. A. and Lettinga, G. 1992. Toxicity of tannic compounds to microorganisms, pp. 673–692, in R. W. Hemingway and P. E. Laks (eds.). Plant Polyphenols. Synthesis, Properties, Significance. Plenum, New York.

    Google Scholar 

  • Garbelotto, M., Svihra, P., and Rizzo, D. M. 2001. Sudden oak death syndrome fells 3 oak species. Calif. Agric. 55:9–19.

    Article  Google Scholar 

  • Hagerman, A. E., Riedl, K. M., Jones, G. A., Sovik, K. N., Ritchard, N. T., Hartzfeld, P. W., and Riechel, T. L. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46:1887–1892.

    Article  CAS  Google Scholar 

  • Hart, J. H. and Hillis, W. E. 1972. Inhibition of wood-rotting fungi by ellagitannins in the heartwood of Quercus alba. Phytopathology 62:620–626.

    CAS  Google Scholar 

  • Hart, J. H. and Hillis, W. E. 1974. Inhibition of wood-rotting fungi by stilbenes and other polyphenols in Eucalyptus sideroxylon. Phytopathology 64:939–948.

    CAS  Article  Google Scholar 

  • Hillis, W. E. 1999. Heartwood and Tree Exudates. Springer, Berlin.

    Google Scholar 

  • Kawamoto, H., Mizutani, K., and Nakatsubo, F. 1997. Binding nature and denaturation of protein during interaction with galloylglucose. Phytochemistry 46:473–478.

    PubMed  Article  CAS  Google Scholar 

  • Klumpers, J., Scalbert, A., and Janin, G. 1994. Ellagitannins in European oak wood: polymerization during wood aging. Phytochemistry 36:1249–1252.

    Article  CAS  Google Scholar 

  • Malterud, K. E., Bremnes, T. E., Faegri, A., Moe, T., and Dugstad, E. K. S. 1985. Flavonoids from the wood of Salix caprea as inhibitors of wood-destroying fungi. J. Nat. Prod. 48:559–563.

    Article  CAS  Google Scholar 

  • Mammela, P., Savolainen H, Lindroos L, Kangas, J., and Vartiainen, T. 2000. Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. 891:75–83.

    Article  CAS  Google Scholar 

  • McPherson, B. A., Mori, S. R., Wood, D. L., Storer, A. J., Svihra, P., Maggi Kelly N., and Standiford, R. B. 2005. Sudden oak death in California: Disease progression in oaks and tanoaks. For. Ecol. Manag. 213:71–89.

    Article  Google Scholar 

  • Okamura, H., Mimura, A., Yakou, Y., Niwano, M., and Takahara, Y. 1993. Antioxidant activity of tannins and flavonoids in a Eucalyptus rostrata. Phytochemistry 33:557–561.

    Article  CAS  Google Scholar 

  • Okuda, T., Yoshida, T., and Hatano, T. 1995. Hydrolysable tannins and related polyphenols. Prog. Chem. Org. Nat. Prod. 66:1–117.

    CAS  Google Scholar 

  • Ostrofsky, W. D., Shortle, W. C., and Blanchard, R. O. 1984. Bark phenolics of American beech (Fagus grandifolia) in relation to the beech bark disease. Eur. J. For. Pathol. 14:52–59.

    Article  CAS  Google Scholar 

  • Pavlik, B. M., Muick, P. C., Johnson, S. G., and Popper, M. 1991. Oaks of California. Cachuma Press, Los Olivos, CA.

    Google Scholar 

  • Pearce, R. B. 1996. Antimicrobial defences in the wood of living trees. New Phytol. 132:203–233.

    Article  CAS  Google Scholar 

  • Rizzo, D. M. and Garbelotto, M. 2003. Sudden oak death: endangering California and Oregon forest ecosystems. Front. Ecol. Environ. 1:197–204.

    Article  Google Scholar 

  • Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W., and Koike, S. T. 2002. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86:205–214.

    Article  Google Scholar 

  • Rizzo, D. M., Garbelotto, M., and Hansen, E. A. 2005. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 43:309–335.

    PubMed  Article  CAS  Google Scholar 

  • Salminen, J. P., Roslin, T., Karonen, M., Sinkkonen, J., Pihlaja, K., and Pulkkinen, P. 2004 Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol. 30:1693–1711.

    PubMed  Article  CAS  Google Scholar 

  • Schmitthenner, A. F. and Bhat, R. G. 1994. Useful methods for studying Phytophthora in the laboratory. Special Circular 143: Ohio Agricultural Research and Development Center (OARDC).

  • Svihra, P. 1999. Sudden death of tanoak, Lithocarpus densiflorus. University of California Cooperative Extension Pest Alert no. 1, June, 2 p.

  • Viiri, H., Annila, E., Kitunen, V., and Niemela, P. 2001. Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 15:112–122.

    Article  CAS  Google Scholar 

  • Vivas, N., Nonier, M. F., De Gaulejac, N. V., and De Boissel, I. P. 2004. Occurrence and partial characterization of polymeric ellagitannins in Quercus petraea Liebl. and Q. robur L. wood. C. R. Chemie. 7:945–954.

    CAS  Google Scholar 

  • Werres, S., Marwitz, R., Veld, W., De Cock, A., Bonants, P. J. M., De Weerdt, M., Themann, K., Ilieva, E., and Baayen, R. P. 2001. Phytophthora ramorum sp nov., a new pathogen on Rhododendron and Viburnum. Mycol. Res. 105:1155–1165.

    CAS  Google Scholar 

  • Woodward, S. and Pearce, R. B. 1988. The role of stilbenes in resistance of Sitka spruce (Picea sitchensis (Bong.) Carr.) to entry of fungal pathogens. Physiol. Mol. Plant Pathol. 33:127–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Nadir Erbilgin, Tom Gordon, Gabriela Ritok-Owens, and Pavel Svihra for the assistance in the field and the lab, David Rizzo for providing the P. ramorum isolates, and Matthew Dileo for conducting the bioassay with P. ramorum. Special thanks to Larry Madden for the assistance with the statistical analyses and Duan Wang for conducting the fungal bioassays with P. cinnamomi, P. citricola, and P. citrophthora. Access to research sites was provided by Marin County Open Space District and China Camp State Park. Salaries and research support were provided by state funds appropriated to the Ohio Agricultural Research and Development Center, the Ohio State University, and the U.S. Forest Service (04-CA-11244225-432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alieta Eyles.

Additional information

Frances S. Ockels and Alieta Eyles contributed equally to the paper

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ockels, F.S., Eyles, A., McPherson, B.A. et al. Phenolic Chemistry of Coast Live Oak Response to Phytophthora ramorum Infection. J Chem Ecol 33, 1721–1732 (2007). https://doi.org/10.1007/s10886-007-9332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9332-z

Keywords

  • Sudden oak death
  • Resistance
  • Quercus agrifolia
  • Canker
  • In vitro bioassay