Skip to main content
Log in

Profiling Secondary Metabolites of Needles of Ozone-Fumigated White Pine (Pinus strobus) Clones by Thermally Assisted Hydrolysis/Methylation GC/MS

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant secondary metabolites have an important role in defense responses against herbivores and pathogens, and as a chemical barrier to elevated levels of harmful air pollutants. This study involves the rapid chemical profiling of phenolic and diterpene resin acids in needles of two (ozone-tolerant and ozone-sensitive) white pine (Pinus strobus) clones, fumigated with different ozone levels (control, and daily events peaking at 80 and 200 ppb) for 40 days. The phenolic and resin acids were measured using thermally assisted hydrolysis and methylation (THM) gas chromatography/mass spectrometry. Short-term fumigation affected the levels of two phenolic acids, i.e., 3-hydroxybenzoic and 3,4-dihydroxybenzoic acids, in that both showed a substantial decrease in concentration with increased ozone dose. The decrease in concentration of these THM products may be caused by inhibition of the plant’s shikimate biochemical pathway caused by ozone exposure. The combined occurrence of these two ozone-sensitive indicators has a role in biomonitoring of ozone levels and its impact on forest productivity. In addition, chromatographic profile differences in the major diterpene resin acid components were observed between ozone-tolerant and ozone-sensitive clones. The resin acids anticopalic, 3-oxoanticopalic, 3β-hydroxyanticopalic, and 3,4-cycloanticopalic acids were present in the ozone-sensitive pine; however, only anticopalic acid was present in the ozone-tolerant clone. This phenotypic variation in resin acid composition may be useful in distinguishing populations that are differentially adapted to air pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckman, C. H. 2000. Phenolic-storing cells: Keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants? Physiol. Molecular. Plant-Pathol. 57:101–110.

    Article  CAS  Google Scholar 

  • Booker, F. L., Anttonen, S., and Heagle, A. S. 1996. Catechin, proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozone. New Phytol. 132:483–492.

    Article  CAS  Google Scholar 

  • Charland, M., Malcolm, J. W., and Cox, R. M. 1994. Effects of Ozone and SO2 on Eastern White Pine Genotypes. In: Air Pollution and Multiple Stresses. Proc. 16th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems. (R. Cox, K. Percy, K. Jensen, and C. Simpson, Compilers) Canadian Forest Service-Atlantic Forestry Centre, Natural Resources Canada, Fredericton, N. B. p. 402.

  • Charland M., Malcolm, J. W., and Cox, R. M. 1995. In: Photosynthesis: from light to biosphere, Proc. of the 10th International Photosynthesis Congress, Montpellier, Fr., Aug. 20–25, 1995, Vol. 5, Mathis, P., Kluwer (Eds). Dordrecht, Netherlands, pp. 921–924.

  • Eckey-Kalthenback, H., Ernest, D., Heller, W., and Sandermann, H. Jr. 1994. Biochemical plant responses to ozone. IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum) plants. Plant Physiol. 104:67–74.

    Google Scholar 

  • Estevez, S. L., and Helleur, R. 2005. Fatty acid profiling of lipid classes by silica rod TLC-thermally assisted hydrolysis and methylation-GC/MS. J. Anal. Appl. Pyrolysis 74:3–10.

    Article  CAS  Google Scholar 

  • Jordan, D. N., Green, T. H., Chappelka, A. H., Lockaby, B. G., Meldahl, R. S., and Gjerstad, D. H. 1991. Response to total tannins and phenolics in loblolly pine foliage exposed to ozone and acid rain. J. Chem. Ecol. 17:505–513.

    Article  CAS  Google Scholar 

  • Kainulainen, P., Holopainen, J., and Oksanen, J. 1995. Effects of gaseous air pollutants on secondary chemistry of Scots pine and Norway spruce seedlings. Wat. Air Soil Pollut. 85:1393–1398.

    Article  CAS  Google Scholar 

  • Kainulainen, P., Holopainen, J. K., and Holopainen, T. 1998. The influence of CO2 and O3 concentrations on Scots pine needles: changes in starch and secondary metabolites over three exposure years. Oecologia 114:455–460.

    Article  Google Scholar 

  • Kainulainen, P., Holopainen, J. K., and Holopainen, T. 2000. Combined effects of ozone and nitrogen on secondary compounds, amino acids and aphid performance in Scots pine. J. Environ. Qual. 29:334–346.

    Article  CAS  Google Scholar 

  • Katoh, T., Kasuya, M., Kagamimori, S., Kozuka, H., and Kawano, S. 1989. Inhibition of the shikimate pathway in the leaves of vascular plants exposed to air pollution. New Phytol. 112:363–367.

    Article  CAS  Google Scholar 

  • Kicinski, H. S., Kettrup, A., Boos, K. S., and Masuch, G. 1988. Single and combined effects of continuous and discontinuous O3 and SO2 immersion of Norway spruce needles. Int. J. Environ. Anal. Chem. 32:213–241.

    CAS  Google Scholar 

  • Kley, D., Kleinmann, M., Sanderman, H., and Krupa, S. 1999. Photochemical oxidants: state of science. Environ. Pollut. 100:19–42.

    Article  PubMed  CAS  Google Scholar 

  • Klingberg, A., Odermatt, J., and Dietrich, M. 2005. Influence of parameters on pyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 74:104–110.

    Article  CAS  Google Scholar 

  • Langebartels, C., Heller, W., Kerner, K., Leonard, S., Rosemann, D., Schraudner, M., Trost, M., and Sandermann, H. Jr. 1990. Ozone-induced defense reactions in plants, pp. 358-368, in Pfirrmann, T. and Payer H. (Eds.) Environmental Research with Plants in Closed Chambers. Neuherberg: Commission of European Communities Air Pollution Report.

  • Laurence, J. A., Amundson, R. G., Friend, A. L., Pell, E. J., and Temple, P. J. 1994. Allocation of carbon in plants under stress: an analysis of the ROPIS experiments. J. Environ. Qual. 23:412–417.

    Article  Google Scholar 

  • Madonna, A. J., and Voorhees, K. J., Hadfield, T. L. 2001. Rapid detection of taxonomically important fatty acid methyl ester and steroid biomarkers using in-situ thermal hydrolysis/methylation mass spectrometry (THM-MS): implications for bioaerosol detection. J. Anal. Appl. Pyrolysis 61:65–89.

    Article  CAS  Google Scholar 

  • Manninen, A.-M. 1999. Susceptibility of Scots pine seedlings to specialist and generalist insect herbivores: Importance of plant defence and mycorrhizal status. Kuopio Univ. Publications C. Nat. Environ Sci. 100.

  • Manninen, A.-M., Utriainen, J., Holopainen, T., and Kainulainen, P. 2002. Terpenoids in the wood of Scots pine and Norway spruce seedlings exposed to ozone at different nitrogen availability. Can. J. For. Res. 32:2140–2145.

    Article  CAS  Google Scholar 

  • Pastorova, I., Van Der Berg, K. J., Boon, J. J., and Verhoeven, J. W. 1997. Analysis of oxidized diterpenoid acids using thermally assisted methylation with TMAH. J. Anal. Appl. Pyrolysis 43:41–57.

    Article  CAS  Google Scholar 

  • Phillips, M. A., and Croteau, R. B. 1999. Resin based defenses in conifers. Trends Plant Sci. 4:184–190.

    Article  PubMed  Google Scholar 

  • Rosemann, D., Heller, W., and Sandermann, H. Jr. 1991. Biochemical plant responses to ozone. II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris) seedlings. Plant Physiol. 97:1280–1286.

    Article  PubMed  CAS  Google Scholar 

  • Scalarone, D., Lazzari, M., and Chiantore, O. 2003. Ageing behaviour and analytical pyrolysis characterization of diterpenic resins used in art materials: Manila copal and sandarac. J. Anal. Appl. Pyrolysis 68–69:115–136.

    Article  CAS  Google Scholar 

  • Simon, B. F., Vallejo. M. C. G., Cadahia, E., Miguel, C. A., and Martinez, M. C. 2001. Analysis of lipophilic compounds in needles of Pinus pinea L. Ann. For. Sci. 58:449–454.

    Article  Google Scholar 

  • Skäby, L., Ro-Poulsen, H., Wellburn, F. A. M., and Sheppard, L. J. 1998. Impacts of ozone on forests: a European perspective. New Phytol. 139:109–122.

    Article  Google Scholar 

  • Skelly, J. M., Chappelka, A. H., Laurence, J. A., and Fredericksen, T. S. 1997. in Sandermann, H., Welburn, A. and health R. (Eds.). Forest decline and Ozone: a Comparison of Controlled Chamber and Field Experiments (Ecological Studies Vol. 127) Springer, New York.

    Google Scholar 

  • Vane, C. H. 2003. The molecular composition of lignin in spruce decayed by white-rot fungi (Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis-GC-MS and thermochemolysis with tetramethylammonium. Int. Biodeterior. Biodegrad. 51:67–77.

    Article  CAS  Google Scholar 

  • Watts, S., and De Al Rie, E. R. 2002. GCMS analysis of triterpenoid resins: in situ derivatization procedures using quaternary ammonium hydroxides. Stud. Conserv. 47:257–272.

    CAS  Google Scholar 

  • Yokoi, H., Nakase, T., Goto, K., Ishida, Y., Ohtani, H., Shin, T., Sonoda, T., and Ona, T. 2003. Rapid characterization of wood extractives in wood by thermal desorption-gas chromatography in the presence of tetramethylammonium acetate. J. Anal. Appl. Pyrolysis 67:191–201.

    Article  CAS  Google Scholar 

  • Zapf, A., and Stan, H.-J. 1999. GC analysis of organic acids and phenols using on-line methylation with trimethylsulfonium hydroxide and PTV solvent split large volume injection. J. High Resol. Chromat. 22:83–89.

    Article  CAS  Google Scholar 

  • Zhang, H., 1993. The Analysis of Organic Constituents in Leaves by Pyrolytic-Gas Chromatography and its Application to Selected Environmental Effects on Plants. M.Sc. Dissertation, Memorial University of Newfoundland, St. John’s, Canada, p. 136.

  • Zinkel, D. F., and Spalding, B. P. 1972. Anticopalic acid in Pinus strobus and P. monticola. Phytochemistry 11:425–431.

    Article  CAS  Google Scholar 

  • Zinkel, D. F., and Magee, T. V. 1987. Diterpene resin acids from the needle oleoresin of Pinus strobus. Phytochemistry 26:769–774.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Frontier Laboratories (Japan) for allowing the use of the vertical microfurnace pyrolyzer. Funding from NSERC and Memorial University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Helleur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shadkami, F., Helleur, R.J. & Cox, R.M. Profiling Secondary Metabolites of Needles of Ozone-Fumigated White Pine (Pinus strobus) Clones by Thermally Assisted Hydrolysis/Methylation GC/MS. J Chem Ecol 33, 1467–1476 (2007). https://doi.org/10.1007/s10886-007-9314-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9314-1

Keywords

Navigation