Journal of Chemical Ecology

, Volume 33, Issue 6, pp 1197–1206 | Cite as

Relative Availability of Tannin- and Terpene-containing Foods Affects Food Intake and Preference by Lambs

  • Travis E. Mote
  • Juan J. Villalba
  • Fredrick D. Provenza


The availability of different forages varies across landscapes, but little is known about how proportional consumption of different foods affects food intake and the use of landscapes. The relative amounts of nutrients and plant secondary metabolites (PSM) consumed by herbivores may influence forage intake and animal fitness in landscapes dominated by plants with PSM. Our objective was to determine if the relative availability of nutritious foods that contain PSM affected food preference and intake by lambs. Lambs in three treatments (eight lambs/treatment) were offered two PSM-containing foods at different relative availabilities: treatment 1—ad libitum terpene- and 100-g tannin-containing food, treatment 2—ad libitum tannin- and 100-g terpene-containing food, and treatment 3—ad libitum access to both tannin- and terpene-containing foods. We measured intake of individual foods and total intake of PSM-containing foods during conditioning and a preference test, where animals were offered both PSM-containing foods ad libitum. When lambs were fed 100 g of the tannin-containing food, they ingested more terpene and total PSM (P < 0.05) than when both PSM were offered ad libitum, but limiting terpenes did not affect intake of tannin or total intake of PSM (P > 0.10). During preference tests, all groups preferred tannins over terpenes, but lambs in the treatment fed 100 g of tannin had a higher preference for terpenes than did lambs in the other two treatments (P < 0.10). These results support the notion that the relative amounts of PSM consumed affects intake and preference for PSM-containing foods by herbivores.


Relative proportion Diet mixing Sheep Intake Plant secondary metabolites 


  1. Banner, R. E., Rogosic, J., Burritt, E. A., and Provenza, F. D. 2000. Supplemental barley and activated charcoal increase intake of sagebrush by lambs. J. Range Manag. 53:415–420.Google Scholar
  2. Barry, T. N., Mcneill, D. M., and Mcnabb, W. C. 2001. Plant secondary compounds: their impact on nutritive value and upon animal production, pp. 445–452, in Proc. XIX Int. Grass. Conf., Sao Paulo, Brazil.Google Scholar
  3. Burritt, E. A. and Provenza, F. D. 2000. Role of toxins in intake of varied diets by sheep. J. Chem. Ecol. 26:1991–2005.CrossRefGoogle Scholar
  4. Burrows, G. E. and Tyrl, R. J. 2001. Toxic Plants of North America. Iowa State Press, Ames, Iowa.Google Scholar
  5. Cheeke, P. and Schull, L. R. 1985. Natural Toxicants in Feeds and Poisonous Plants. Avi, Westport, CT.Google Scholar
  6. Clausen, T. P., Provenza, F. D., Burritt, E. A., Reichardt, P. B., and Bryant, J. P. 1990. Ecological implication of condensed tannin structure: a case study. J. Chem. Ecol. 16:2381–2392.CrossRefGoogle Scholar
  7. Council for Agriculture Science and Technology (CAST) 2002, in W. C. Krueger, M. A. Sanderson, J. B. Cropper, M. Miller-Goodman, C. E. Kelley, R. D. Pieper, P. L. Shaver, and M. J. Trlica (eds.). Environmental Impacts of Livestock on U.S. Grazing Lands. Number 22.Google Scholar
  8. Dearing, M. D. and Cork, S. 1999. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, Trichosurus vulpecula. J. Chem. Ecol. 25:1205–1219.CrossRefGoogle Scholar
  9. Dizba, L. E., Hall, J. O., and Provenza, F. D. 2006. Feeding behavior of the lambs in relation to kinetics of 1.8-ceneole dosed intravenously or into the rumen. J. Chem. Ecol. 32:2 391–408.CrossRefGoogle Scholar
  10. Foley, W. J. and Mcarthur, C. 1994. The effects and costs of allelochemicals for mammalian herbivores: an ecological perspective, pp. 370–391, in D. J. Chivers and P. Langer (eds.). The Digestive System in Mammals: Food, Form and Function. Cambridge Univ. Press, Cambridge, UK.Google Scholar
  11. Foley, W. J., Iason, G. R., and Mcarthur, C. 1999. Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years?, pp. 130–209, in H. G. Jung and G. C. Fahey, Jr. (eds.). Nutritional Ecology of Herbivores. Proc. Vth Int. Symp. Nutr. Herb. Am. Soc. Anim. Sci., Illinois.Google Scholar
  12. Freeland, W. J. and Janzen, D. H. 1974. Strategies of herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108:269–286.CrossRefGoogle Scholar
  13. Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Entemol. 91:385–398.Google Scholar
  14. Johnson, A. E., James, L. F., and Spillet, J. 1976. The abortifacient and toxic effects of big sagebrush (Artemisia tridentata) and juniper (Juniperus osteosperma) on domestic sheep. J. Range Manag. 29:278–280.Google Scholar
  15. Jones, W. T. and Mangan, J. L. 1977. Complexes of condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction-1 leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene–glycol and pH. J. Sci. Food Agric. 28:126–136.CrossRefGoogle Scholar
  16. Kimball, B. A., Nolte, D. L., Engenman, R. M., Johnston, J. J., and Stermitz. F. R. 1998. Chemically mediated foraging preference of black bears (Ursus americanus). J. Mammal. 79:448–456.CrossRefGoogle Scholar
  17. Kumar, R. and Singh, M. 1984. Tannins: their adverse role in ruminant nutrition. J. Agric. Food Chem. 32:447–453.CrossRefGoogle Scholar
  18. Littell, R. C., Milliken G. A., Stroup W. W., and Wolfinger R. D. 1996. SAS System for Mixed Models. SAS Institute, Cary, NC.Google Scholar
  19. Marsh, K. J., Wallis, I. R., Mclean, S., Sorensen, J. S., and Foley, W. J. 2006. Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets. Ecology 87:2103–2112.PubMedGoogle Scholar
  20. Mehansho, H., Butler, L. G., Rogler, J. C., and Carlson, D. M. 1987. Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annu. Rev. Nutr. 7:423–440.PubMedCrossRefGoogle Scholar
  21. Meyer, M. W. and Karasov, W. H. 1991. Chemical aspects of herbivory in arid and semiarid habitats, p. 177, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC, Boca Raton, FL.Google Scholar
  22. Min, B. R. and Hart, S. P. 2003. Tannins for suppression of internal parasites. J. Anim. Sci. 81(E. Suppl. 2):E102–E109.Google Scholar
  23. Mote, T. E., Villalba, J. J., and Provenza, F. D. 2007. Influence of foraging sequences on the ability of lambs to consume toxins when fed tannins, terpenes and a high-quality food. Appl. Anim. Behav. Sci. In press.Google Scholar
  24. Nagy, J. G. and Tengerdy, R. P. 1968. Antibacterial action of essential oils of Artemisia as an ecological factor. II. Antibacterial action of the volatile oils of Artemisia tridentata (big sagebrush) on bacteria from the rumen of mule deer. Appl. Microbiol. 16:441–444.PubMedGoogle Scholar
  25. Nocek, J. E. and Russell, J. B. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71:2070–2107.CrossRefGoogle Scholar
  26. NRC. 1985. Nutrient Requirements of Sheep (6th Ed.). National Academy, Washington, DC.Google Scholar
  27. Okuda, T., Mori, K., and Shiota, M. 1982. Effects of interaction of tannins and coexisting substances. III. Formation and solubilization of precipitates with alkaloids. Yakugaku Zasshi 102:854–858.PubMedGoogle Scholar
  28. Provenza, F. D. 1996. Aquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74:2010–2020.PubMedGoogle Scholar
  29. Provenza, F. D. and Villalba, J. J. 2006. Foraging in domestic herbivores: Linking the internal and external milieu, pp. 210–240, in V. L. Bels (ed.). Feeding in Domestic Vertebrates: from Structure to Function. CABI, Oxfordshire, UK.Google Scholar
  30. Provenza, F. D., Villalba, J. J., and Bryant, J. P. 2003a. Foraging by herbivores: linking the biochemical diversity of plants to herbivore culture and landscape diversity, pp. 387–421, in J. A. Bissonette and I. Storch (eds.). Landscape Ecology and Resource Management: Linking Theory with Practice. Island Press, New York.Google Scholar
  31. Provenza, F. D., Villalba, J. J., Dziba, L. E. Atwood, S. B. and Banner, R. E. 2003. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Rum. Res. 49:257–274.CrossRefGoogle Scholar
  32. Roberts, J. L. and Olson B. E. 1999. Effect of Euphorbia esula on sheep rumen microbial activity and mass in vitro. J. Chem. Ecol. 25:297–314.CrossRefGoogle Scholar
  33. Satter, L. D., Jung, H. G., Van Vuuren, A. M., and Engels, F. M. 1999. Challenges in the nutrition of high-producing ruminants, pp. 609–646, in Jung, H.G. and G.C. Fahey, Jr. (eds.), Nutritional Ecology of Herbivores. Proc. 5th Int. Symp. Nutr. Herb. Am. Soc. Anim. Sci., Illinois.Google Scholar
  34. Seefeldt, S. S. 2005. Consequences of selecting Rambouillet ewes for mountain big sagebrush (Artemisia tridentata ssp. vaseyana) dietary preference. Rangeland Ecol. Manage. 58:380–384.CrossRefGoogle Scholar
  35. Shaw, R. A., Villalba, J. J., and Provenza, F. D. 2006a. Resource availability and quality influence patterns of diet mixing with foods containing toxins by sheep. J. Chem. Ecol. 32:1267–1278.PubMedCrossRefGoogle Scholar
  36. Shaw, R. A.,Villalba, J. J., and Provenza, F. D. 2006b. Influence of stock density and rate and temporal patterns of forage allocation on the diet mixing behavior of sheep grazing sagebrush steppe. Appl. Anim. Behav. Sci. 100:207–218.CrossRefGoogle Scholar
  37. Sipes, I. G. and Gandolfi, A. J. 1986. Biotransformation of toxicants, pp. 609–646, in C. D. Klassen, M. O. Amdur, and J. Doull (eds.). Casarett and Doull’s Toxicology, The Basic Science of Poisons. Macmillian, New York, NY.Google Scholar
  38. Villalba, J. J. and Provenza, F. D. 1999. Nutrient-specific preferences by lambs conditioned with intraruminal infusions of starch, cascein, and water. J. Anim. Sci. 79:2066–2074.Google Scholar
  39. Villalba, J. J., Provenza, F. D., and Banner, R. E. 2002a. Influence of macronutrients and polyethylene glycol on intake of a quebracho tannin diet by sheep and goats. J. Anim Sci. 80:3154–3164.PubMedGoogle Scholar
  40. Villalba, J. J., Provenza, F. D., and Banner, R. E. 2002b. Influence of macronutrients and activated charcoal on utilization of sagebrush by sheep and goats. J. Anim Sci. 80:2099–2109.PubMedGoogle Scholar
  41. Villalba, J. J., Provenza, F. D., and Han, G. 2004. Experience influences diet mixing by herbivores: implications for plant biochemical diversity. Oikos 107:100–109.CrossRefGoogle Scholar
  42. Villalba, J. J., Provenza, F. D., and Olson, K. C. 2006. Terpenes and carbohydrate source influence rumen fermentation, digestibility, intake, and preference in sheep. J. Anim. Sci. 84:2463–2473.PubMedCrossRefGoogle Scholar
  43. Wiggins, N. L., Mcarthur, C., Davies, N. W., and Mclean, S. 2006a. Diet switching in a generalist mammalian folivore: fundamental to maximizing intake. Oecologia 147:650–657.PubMedCrossRefGoogle Scholar
  44. Wiggins, N. L., Mcarthur, C., Davies, N. W., and Mclean, S. 2006b. Behavioral responses of a generalist mammalian folivore to the physiological constraints of a chemically defended diet. J. Chem. Ecol. 32:1133–1147.PubMedCrossRefGoogle Scholar
  45. Wiggins, N. L., Mcarthur, C., Davies, N. W., and Mclean, S. 2006c. Spatial scale of the patchiness of plant poisons: a critical influence on foraging efficiency. Ecology 87:2236–2243.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Travis E. Mote
    • 1
  • Juan J. Villalba
    • 1
  • Fredrick D. Provenza
    • 1
  1. 1.Department of Wildland ResourcesUtah State UniversityLoganUSA

Personalised recommendations