Journal of Chemical Ecology

, Volume 33, Issue 2, pp 417–434 | Cite as

Chemical Identification of MHC-influenced Volatile Compounds in Mouse Urine. I: Quantitative Proportions of Major Chemosignals

  • Milos V. Novotny
  • Helena A. Soini
  • Sachiko Koyama
  • Donald Wiesler
  • Kevin E. Bruce
  • Dustin J. Penn
Article

Abstract

The genes of the major histocompatibility complex (MHC) are highly polymorphic loci that encode cell surface proteins, class I and II molecules. They present peptide antigens to T cells and thereby control immunological self/nonself recognition. Increasing evidence indicates that MHC genes also influence odor and mating preferences; however, it is unclear how. Here we report the results of chemical analyses of male mouse urinary odors collected from a variety of mouse strains, including MHC-congenics, recombinants, mutants, and transgenics (i.e., β2 microglobulin “knockouts,” which lack class I expression, and transporters associated with antigen processing (TAP) knock-outs). After the identification of volatile odor components by gas chromatography/mass spectrometry, the odor profiles of urine samples were analyzed quantitatively by using stir bar sorptive extraction and gas chromatography/atomic emission detection. Results showed that MHC genes influenced the amounts of testosterone-mediated pheromones, sulfur-containing compounds, and several carbonyl metabolites. This is the first report to quantitatively link known mouse pheromones to classical, antigen-binding MHC loci. Surprisingly, these compounds were not influenced by TAP genes, even though these loci are MHC-linked and play a role in peptide presentation. Whereas identification of MHC-determined odorants does not reveal their metabolic origin, some constituents were also present in blood serum, and their levels were not altered by antibiotics.

Keywords

Individual odor Volatile pheromones Gas chromatography/mass spectrometry Gas chromatography/atomic emission detection MHC genes Mouse urine 

References

  1. Albert, K. J., Lewis, N. S., Schauer, C. L., Sotzing, G. A., Stitzel, S. E., Vaid, T. P., and Watt, D. R. 2000. Cross-reactive chemical sensor arrays. Chem. Rev. 100:2595–2626.PubMedCrossRefGoogle Scholar
  2. Andreolini, F., Jemiolo, B., and Novotny, M. 1987. Dynamics of excretion of urinary chemosignals in the house mouse (Mus musculus) during the natural estrous cycle. Experientia 43:998–1002.PubMedCrossRefGoogle Scholar
  3. Beauchamp, G. K. and Yamazaki, K. 2003. Chemical signaling in mice. Biochem. Soc. Trans. 31:147–151.PubMedGoogle Scholar
  4. Brown, J. L. and Eklund, A. 1994. A molecular theory of kin recognition: an integrative review. Am. Nat. 143:170–196.CrossRefGoogle Scholar
  5. Carroll, L. S., Penn, D. J., and Potts, W. K. 2002. Discrimination of MHC-derived odors by untrained mice is consistent with divergence in peptide-binding region residues. Proc. Natl. Acad. Sci. U. S. A. 19:2187–2192.CrossRefGoogle Scholar
  6. Eggert, F., Höller, C., Luszyk, D., Muller-Ruchholtz, W., and Ferstl, R. 1996. MHC-associated and MHC-independent chemosignals in mice. Physiol. Behav. 59:57–62.PubMedCrossRefGoogle Scholar
  7. Harvey, S., Wiesler, D., and Novotny, M. 1989. Formation of cyclic enol ethers from labile biological precursors: an example of analytical artifacts. J. Chromatogr. 491:27–36.PubMedCrossRefGoogle Scholar
  8. Howard, J. 1977. H-2 and mating preferences. Nature 266:406–408.CrossRefGoogle Scholar
  9. Ivanyi, P. 1978. Some aspects of the H-2 system, the major histocompatibility system in the mouse. Proc. R. Soc. Lond. B. 202:117–158.PubMedGoogle Scholar
  10. Jemiolo, B., Andreolini, F., Xie, T.-M., Wiesler, D., and Novotny, M. 1989. Puberty-affecting synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus. Physiol. Behav. 46:293–298.PubMedCrossRefGoogle Scholar
  11. Klein, J. 1978. H-2 mutations: their genetics and effect on immune functions. Adv. Immunol. 26:55–146.PubMedGoogle Scholar
  12. Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., and Zufall, F. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796.PubMedCrossRefGoogle Scholar
  13. Leinders-Zufall, T., Brennan, P., Widmayer, P., Chandramani, S. P., Maul-Pavicic, A., Jäger, M., Li, X.-H., Breer, H., Zufall, F., and Boehm, T. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037.PubMedCrossRefGoogle Scholar
  14. Montag, S., Frank, M., Ulmer H., Wernt, D., Göpel, W., and Rammensee, H.-G. 2001. “Electronic nose” detects major histocompatibility complex-dependent prerenal and postrenal odor components. Proc. Natl. Acad. Sci. U. S. A. 98:9249–9254.PubMedCrossRefGoogle Scholar
  15. North, M. and Pattenden, G. 1990. Synthetic studies towards cyclic peptides. Concise synthesis of thiazoline and thiazole containing amino acids. Tetrahedron 46:8267–8290.CrossRefGoogle Scholar
  16. Novotny, M. V. 2003. Pheromones, binding proteins, and receptor responses in rodents. Biochem. Soc. Trans. 31:117–122.PubMedCrossRefGoogle Scholar
  17. Novotny, M., Jorgenson, J. W., Carmack, M., Wilson, S. R., Boyse, E. A., Yamazaki, K., Wilson, M., Beamer, W., and Whitten, W. K. 1980. Chemical studies of the primer mouse pheromones, pp. 377–390, in D. Müller-Schwarze and R. M. Silverstein (eds.). Chemical Signals in Vertebrates and Aquatic Invertebrates. Plenum Press, New York.Google Scholar
  18. Novotny, M., Jemiolo, B., Harvey S., Wiesler, D., and Marchlewska-Koj, A. 1986. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231:722–725.PubMedCrossRefGoogle Scholar
  19. Novotny, M., Harvey, S., and Jemiolo, B. 1990. Chemistry of male dominance in the house mouse, Mus domesticus. Experientia 46:109–113.PubMedCrossRefGoogle Scholar
  20. Novotny, M. V., Xie, T.-M., Harvey, S., Wiesler, D., Jemiolo, B., and Carmack, M. 1995. Stereoselectivity in mammalian chemical communication: male mouse pheromones. Experientia 51:738–743.PubMedCrossRefGoogle Scholar
  21. Novotny, M. V., Ma, W., Zidek, L., and Daev, E. 1999a. Recent biochemical insights into puberty acceleration, estrus induction, and puberty delay in the house mouse, pp. 99–116, in R. E. Johnston, D. Müller-Schwarze, and P. Sorenson (eds.). Advances in Chemical Signals in Vertebrates. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  22. Novotny, M. V., Jemiolo, B., Wiesler, D., Ma, W., Harvey, S., Xu, F., Xie, T.-M., and Carmack, M. 1999b. A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, has the puberty accelerating pheromone activity in mice. Chem. Biol. 6:377–383.PubMedCrossRefGoogle Scholar
  23. Penn, D. J. 2002. The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108:1–21.CrossRefGoogle Scholar
  24. Penn, D. J. and Potts, W. K. 1998a. How do major histocompatibility complex genes influence odor and mating preferences? Adv. Immunol. 69:411–436.PubMedCrossRefGoogle Scholar
  25. Penn, D. J. and Potts, W. K. 1998b. Untrained mice distinguish MHC-determined odors. Physiol. Behav. 64:235–243.PubMedCrossRefGoogle Scholar
  26. Penn, D. J. and Potts, W. K. 1999. The evolution of mating preferences and major histocompatibility complex genes. Am. Nat. 153:145–164.CrossRefGoogle Scholar
  27. Sam, M., Vora, S., Malnic, B., Ma, W., Novotny, M. V., and Buck, L. V. 2001. Odorants may arouse instinctive behaviors. Nature 12:142.CrossRefGoogle Scholar
  28. Schellinck, H. M., Brown, R. E., and Slotnick, B. M. 1991. Training rats to discriminate between the odors of individual conspecifics. Anim. Learn. Behav. 19:223–233.Google Scholar
  29. Schwende, F. J., Jorgenson, J. W., and Novotny, M. 1984. Possible chemical basis for histocompatibility-related mating preference in mice. J. Chem. Ecol. 10:1603–1615.CrossRefGoogle Scholar
  30. Schwende, F. J., Wiesler, D., Jorgenson, J. W., Carmack, M., and Novotny, M. V. 1986. Urinary volatile constituents of the house mouse, Mus musculus, and their endocrine dependency. J. Chem. Ecol. 12:277–296.CrossRefGoogle Scholar
  31. Sharrow, S. D., Vaughn, J. L., Zidek, L., Novotny, M. V., and Stone, M. J. 2002. Pheromone binding by polymorphic mouse major urinary proteins. Protein Sci. 11:2247–2256.PubMedCrossRefGoogle Scholar
  32. Singer, A. G., Beauchamp, G. K., and Yamazaki, K. 1997. Volatile signals of the major histocompatibility complex in male mouse urine. Proc. Natl. Acad. Sci. U. S. A. 94:2210–2214.PubMedCrossRefGoogle Scholar
  33. Soini, H. A., Bruce, K. E., Wiesler, D., David, F., Sandra, P., and Novotny, M. V. 2005. Stir bar sorptive extraction: a new quantitative and comprehensive sampling technique for determination of chemical signal profiles from biological media. J. Chem. Ecol. 31:377–392.PubMedCrossRefGoogle Scholar
  34. Wiesler, D., Schwende, F. J., Carmack, M., and Novotny, M. 1984. Structural determination and synthesis of a chemical signal of the male state and a potential multipurpose pheromone of the mouse, Mus musculus. J. Org. Chem. 49:882–884.CrossRefGoogle Scholar
  35. Willse, A., Belcher, A. M., Preti, G., Wahl, J. H., Thresher, M., Yang, P., Yamazaki, K., and Beauchamp, G. K. 2005. Identification of major histocompatibility complex-regulated body odorants by statistical analysis of a comparative gas chromatography/mass spectrometry experiment. Anal. Chem. 77:2348–2361.PubMedCrossRefGoogle Scholar
  36. Yamaguchi, M., Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A. 1981. Distinctive urinary odors governed by the major histocompatibility locus of the mouse. Proc. Natl. Acad. Sci. U. S. A. 78:5817–5820.PubMedCrossRefGoogle Scholar
  37. Yamazaki, K., Boyse, E. A., Mike, V., Thaler, H. T., Mathieson, B. J., Abbott, J., Boyse, J., Zayas, Z. A., and Thomas, L. 1976. Control of mating preferences in mice by genes in the major histocompatibility complex. J. Exp. Med. 144:1324–1335.PubMedCrossRefGoogle Scholar
  38. Yamazaki, K., Beauchamp, G. K., Egorov, I. K., Bard, J., Thomas, L., and Boyse, E. A. 1983. Sensory distinction between H-2b and H-2bm1 mutant mice. Proc. Natl. Acad. Sci. U. S. A. 80:5685–5688.PubMedCrossRefGoogle Scholar
  39. Yamazaki, K., Beauchamp, G. K., Curran, M., Bard, J., and Boyse, E. A. 2000. Parent-progeny recognition as a function of MHC odortype identity. Proc. Natl. Acad. Sci. U. S. A. 97:10500–10502.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Milos V. Novotny
    • 1
  • Helena A. Soini
    • 1
  • Sachiko Koyama
    • 1
  • Donald Wiesler
    • 1
  • Kevin E. Bruce
    • 1
  • Dustin J. Penn
    • 2
  1. 1.Institute for Pheromone Research, Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Konrad Lorenz Institute for EthologyAustrian Academy of SciencesViennaAustria

Personalised recommendations