Skip to main content
Log in

The Role of Indole and Other Shikimic Acid Derived Maize Volatiles in the Attraction of Two Parasitic Wasps

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

After herbivore attack, plants release a plethora of different volatile organic compounds (VOCs), which results in odor blends that are attractive to predators and parasitoids of these herbivores. VOCs in the odor blends emitted by maize plants (Zea mays) infested by lepidopteran larvae are well characterized. They are derived from at least three different biochemical pathways, but the relative importance of each pathway for the production of VOCs that attract parasitic wasps is unknown. Here, we studied the importance of shikimic acid derived VOCs for the attraction of females of the parasitoids Cotesia marginiventris and Microplitis rufiventris. By incubating caterpillar-infested maize plants in glyphosate, an inhibitor of the 5-enolpyruvylshikimate-3-phospate (EPSP) synthase, we obtained induced odor blends with only minute amounts of shikimic acid derived VOCs. In olfactometer bioassays, the inhibited plants were as attractive to naive C. marginiventris females as control plants that released normal amounts of shikimic acid derived VOCs, whereas naive M. rufiventris females preferred inhibited plants to control plants. By adding back synthetic indole, the quantitatively most important shikimic acid derived VOC in induced maize odors, to inhibited plants, we showed that indole had no effect on the attraction of C. marginiventris and that M. rufiventris preferred blends without synthetic indole. Exposing C. marginiventris females either to odor blends of inhibited or control plants during oviposition experiences shifted their preference in subsequent olfactometer tests in favor of the experienced odor. Further learning experiments with synthetic indole showed that C. marginiventris can learn to respond to this compound, but that this does not affect its choices between natural induced blends with or without indole. We hypothesize that for naïve wasps the attractiveness of an herbivore-induced odor blend is reduced due to masking by nonattractive compounds, and that during oviposition experiences in the presence of complex odor blends, parasitoids strongly associate some compounds, whereas others are largely ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alborn, T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    Article  CAS  Google Scholar 

  • Arimura, G., Kost, C., and Boland, W. 2005. Herbivore-induced, indirect plant defences. BBA-Mol. Cell Biol. L. 1734:91–111.

    CAS  Google Scholar 

  • Bate, N. J. and Rothstein, S. J. 1998. C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16:561–569.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R. N. and Wallsgrove, R. M. 1994. Secondary metabolites in plant defense-mechanisms. New Phytol. 127:617–633.

    Article  CAS  Google Scholar 

  • Bernasconi M. L., Turlings T. C. J., Ambrosetti L., Bassetti P., and Dorn S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:133–142.

    Article  CAS  Google Scholar 

  • Blee, E. 1998. Phytooxylipins and plant defense reactions. Prog. Lipid Res. 37:33–72.

    Article  PubMed  CAS  Google Scholar 

  • Bostock, R. M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43:545–580.

    Article  PubMed  CAS  Google Scholar 

  • D’Alessandro, M. and Turlings, T. C. J. 2005. In situ modification of herbivore-induced plant odors: A novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem. Senses 30:739–753.

    Article  PubMed  CAS  Google Scholar 

  • D’Alessandro, M. and Turlings, T. C. J. 2006. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32.

    Article  PubMed  CAS  Google Scholar 

  • De Boer, J. G. and Dicke, M. 2004. The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J. Chem. Ecol. 30:255–271.

    Article  PubMed  Google Scholar 

  • De Boer, J. G., Posthumus, M. A., and Dicke, M. 2004. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J. Chem. Ecol. 30:2215–2230.

    Article  PubMed  Google Scholar 

  • De Moraes C. M., Lewis W. J., Paré P. W., Alborn H. T., and Tumlinson J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • Dicke, M. 1999. Evolution of induced indirect defense of plants, pp. 62–88 in R. Tollrian and C. D. Harvell (eds.). The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Dicke, M. and van Loon, J. J. A. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97:237–249.

    Article  CAS  Google Scholar 

  • Dudareva, N., Pichersky, E., and Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiol. 135:1893–1902.

    Article  PubMed  CAS  Google Scholar 

  • Dugravot, S., Thibout, E., Abo-Ghalia, A., and Huignard, J. 2004. How a specialist and a non-specialist insect cope with dimethyl disulfide produced by Allium porrum. Entomol. Exp. Appl. 113:173–179.

    Article  Google Scholar 

  • Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grun, S., Winklmair, A., Eisenreich, W., Bacher, A., Meeley, R. B., Briggs, S. P., Simcox, K., and Gierl, A. 1997. Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699.

    Article  PubMed  CAS  Google Scholar 

  • Frey, M., Stettner, C., Paré, P. W., Schmelz, E. A., Tumlinson, J. H., and Gierl, A. 2000. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 97:14801–14806.

    Article  PubMed  CAS  Google Scholar 

  • Frey, M., Spiteller, D., Boland, W., and Gierl, A. 2004. Transcriptional activation of igl, the gene for indole formation in Zea mays: A structure–activity study with elicitor-active n-acyl glutamines from insects. Phytochemistry 65:1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsche Hoballah, M. E., Tamó, C., and Turlings, T. C. J. 2002. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: Is quality or quantity important? J. Chem. Ecol. 28:951–968.

    Article  Google Scholar 

  • Giesy, J. P., Dobson, S., and Solomon, K. R. 2000. Ecotoxicological risk assessment for roundup (R) herbicide. Rev. Environ. Contam. T. 167:35–120.

    CAS  Google Scholar 

  • Gouinguené, S., Alborn, H., and Turlings, T. C. J. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:145–162.

    Article  PubMed  Google Scholar 

  • Haslam, E. 1993. Shicimic Acid: Metabolism and Metabolites. Wiley, Chichester, UK.

    Google Scholar 

  • Heath, R. R. and Manukian, A. 1992. Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification. J. Chem. Ecol. 18:1209–1226.

    Article  CAS  Google Scholar 

  • Hoballah M. E. F. and Turlings, T. C. J. 2001. Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol. Ecol. Res. 3:553–565.

    Google Scholar 

  • Hoballah, M. E. and Turlings, T. C. J. 2005. The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. 31:2003–2018.

    Article  PubMed  CAS  Google Scholar 

  • Huang J., Cardoza Y. J., Schmelz E. A., Raina R., Engelberth J., and Tumlinson, J. H. 2003. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217:767–775.

    Article  PubMed  CAS  Google Scholar 

  • Köllner, T. G., Schnee, C., Gershenzon, J., and Degenhardt, J. 2004. The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distribution. Phytochemistry 65:1895–1902.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, S. D. and Novak, N. G. 2004. Maize genes induced by herbivory and volicitin. J. Chem. Ecol. 30:2543–2557.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H. K., Rohmer, M., and Schwender, J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101:643–652.

    Article  CAS  Google Scholar 

  • Meiners, T., Wäckers, F., and Lewis, W. J. 2003. Associative learning of complex odors in parasitoid host location. Chem. Senses 28:231–236.

    Article  PubMed  CAS  Google Scholar 

  • Niinemets, U., Loreto, F., and Reichstein, M. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9:180–186.

    Article  PubMed  CAS  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol. 114:1161–1167.

    PubMed  Google Scholar 

  • Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737.

    Article  PubMed  CAS  Google Scholar 

  • Ruther, J. and Fürstenau B. 2005. Emission of herbivore-induced volatiles in absence of a herbivore—Response of Zea mays to green leaf volatiles and terpenoids. Z. Naturforsch. C 60:743–756.

    PubMed  CAS  Google Scholar 

  • Ruther, J. and Kleier, S. 2005. Plant–plant signaling: Ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J. Chem. Ecol. 31:2217–2222.

    Article  PubMed  CAS  Google Scholar 

  • Scascighini, N., Mattiacci, L., D’Alessandro, M., Hern, A., Rott, A. S., and Dorn, S. 2005. New insights in analysing parasitoid attracting synomones: Early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104.

    Article  Google Scholar 

  • Schnee, C., Köllner, T. G., Gershenzon, J., and Degenhardt, J. 2002. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant Physiol. 130:2049–2060.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., Banchio, E., and Tumlinson, J. H. 2003a. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., Engelberth, J., and Tumlinson, J. H. 2003b. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 133:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., and Tumlinson, J. H. 2003c. Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays. Physiol. Plant. 117:403–412.

    Article  PubMed  CAS  Google Scholar 

  • Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N. S., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 98:1376–1380.

    Article  PubMed  Google Scholar 

  • Shah, J. 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6:365–371.

    Article  PubMed  CAS  Google Scholar 

  • Shen, B. Z., Zheng, Z. W., and Dooner, H. K. 2000. A maize sesquiterpene cyclase gene induced by insect herbivory and volicitin: Characterization of wild-type and mutant alleles. Proc. Natl. Acad. Sci. U. S. A. 97:14807–14812.

    Article  PubMed  CAS  Google Scholar 

  • Steidle, J. L. M. and van Loon, J. J. A. 2003. Dietary specialization and infochemical use in carnivorous arthropods: Testing a concept. Entomol. Exp. Appl. 108:133–148.

    Article  Google Scholar 

  • Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M. A. 1995. Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21:273–287.

    Article  CAS  Google Scholar 

  • Tamò, C., Ricard, I., Held, M., Davison, A. C., and Turlings, T. C. J. 2006. A comparison of naive and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odors. Anim. Biol. 56:205–220.

    Article  Google Scholar 

  • Thaler J. S., Karban R., Ullman D. E., Boege K., and Bostock R. M. 2002. Cross-talk between jasmonate and salicylate plant defense pathways: Effects on several plant parasites. Oecologia 131:227–235.

    Article  Google Scholar 

  • Tu, M., Hurd, C., and Randall, J. M. 2001. Weed control methods handbook: Tools and techniques for use in natural areas. Chapter 7e, ver. April, 2001. The Nature Conservancy, Davis, CA. http://tncweeds.ucdavis.edu/handbook.html.

  • Turlings, T. C. J. and Wäckers, F. 2004. Recruitment of predators and parasitoids by herbivore-injured plants, pp. 21–75, in R. T. Cardé and J. G. Millar (eds.). Ad Insect Chem Ecol. Cambridge University Press, Cambridge. Curr. Opin. Plant Biol.

  • Turlings, T. C. J. and Ton, J. 2006. Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odors to enhance the control of agricultural pests. Curr. Opin. Plant Biol. 9:421–427.

    Article  PubMed  Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., Wäckers, F. L., Vet, L. E. M., Lewis, W. J., and Tumlinson, J. H. 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51–78, in D. R. Papaj and A. C. Lewis (eds.). Insect Learning. Ecological and Evolutionary Perspectives. Chapman & Hall, New York.

    Google Scholar 

  • Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998. Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., Alborn, H. T., Loughrin, J. H., and Tumlinson, J. H. 2000. Volicitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: Isolation and bioactivity. J. Chem. Ecol. 26:189–202.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., Davison, A. C., and Tamó, C. 2004. A six-arm olfactometer permitting simultaneous observation of insect attraction and odor trapping. Physiol. Entomol. 29:45–55.

    Article  Google Scholar 

  • Van den Boom, C. E. M., Van Beek, T. A., Posthumus, M. A., De, Groot A., and Dicke, M. 2004. Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J. Chem. Ecol. 30:69–89.

    Article  PubMed  Google Scholar 

  • Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Article  Google Scholar 

  • Vet, L. E. M., Lewis, W. J., and Cardé, R. T. 1995. Parasitoid foraging and learning, pp. 65–101 in R. T. Cardé and W. J. Bell (eds.). Chemical Ecology of Insects. Chapman & Hall, New York.

    Google Scholar 

  • Vet, L. E. M ., De Jong A. G., Franchi E., and Papaj, D. R. 1998. The effect of complete versus incomplete information on odor discrimination in a parasitic wasp. Anim. Behav. 55:1271–1279.

    Article  PubMed  Google Scholar 

  • Vuorinen, T., Nerg, A. M., and Holopainen, J. K. 2004. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ. Pollut. 131:305–311.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the members of the Evolutionary Entomology laboratory at the University of Neuchâtel for their continuous support and stimulating discussions on behavioral and chemical aspects of this study. We also thank Yves Borcard for parasitoid rearing and Syngenta (Stein, Switzerland) for the weekly shipments of S. littoralis eggs and artificial diet. We are grateful to Ingrid Ricard and Anthony Davison for statistical advice. This project was funded by the Swiss National Science Foundation (grant 31-058865.99) and the Swiss National Centre of Competence in Research “Plant Survival.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted C. J. Turlings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Alessandro, M., Held, M., Triponez, Y. et al. The Role of Indole and Other Shikimic Acid Derived Maize Volatiles in the Attraction of Two Parasitic Wasps. J Chem Ecol 32, 2733–2748 (2006). https://doi.org/10.1007/s10886-006-9196-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9196-7

Keywords

Navigation