Journal of Chemical Ecology

, 32:2617 | Cite as

Exposure to Urine of Canids and Felids, but not of Herbivores, Induces Defensive Behavior in Laboratory Rats



Predator odors induce defensive behavior in many prey species. For various reasons, studies carried out up to now have been unable to establish whether predator odor recognition is innate or not. Mostly, only particular odors or wild-living (i.e., experienced) test animals have been used in these studies, restricting the conclusiveness of the observations. In the present study, the behavioral effects of exposure to different predator odors on predator odor-naive laboratory male rats were compared with the effects of different nonpredator odors and of a no-odor control stimulus. Results show that exposure to urine of canids and felids, but not of herbivores or conspecifics, induce defensive behaviors. Taken together, the study provides support for the hypothesis that there is an innate recognition of predator odors in laboratory rats.


Defensive behavior Innate fear Predator odor Predator–prey interaction Rat Rattus norvegicus Urine 


  1. Amo, L., López, P. and Martín, J. 2004. Trade-offs in the choice of refuges by common wall lizards: Do thermal costs affect preferences for predator-free refuges? Can. J. Zool. 82:897–901.CrossRefGoogle Scholar
  2. Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. and Mcgregor, I. S. 2005. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29:1123–1144.PubMedCrossRefGoogle Scholar
  3. Berton, F., Vogel, E. and Belzung, C. 1998. Modulation of mice anxiety in response to cat odor as a consequence of predators diet. Physiol. Behav. 65:247–254.PubMedCrossRefGoogle Scholar
  4. Blanchard, R. J. and Blanchard, D. C. 1971. Defensive reactions in the albino rat. Learn. Motiv. 2:351–362.CrossRefGoogle Scholar
  5. Blanchard, R. J. and Blanchard, D. C. 1990. Anti-predator defense as models of animal fear and anxiety, pp. 89–108, in P. F. Brain, S. Parmigiani, and R. J. Blanchard (eds.). Fear and Defence. Church and Harwood Academic, New York.Google Scholar
  6. Blanchard, R. J., Blanchard, D. C., Rodgers, J., and Weiss, S. M. 1990a. The characterization and modeling of antipredator defensive behavior. Neurosci. Biobehav. Rev. 14:463–472.PubMedCrossRefGoogle Scholar
  7. Blanchard, R. J., Blanchard, D. C., Weiss, S. M., and Meyer, S. 1990b. The effects of ethanol and diazepam on reactions to predatory odors. Pharmacol. Biochem. Behav. 35:775–780.PubMedCrossRefGoogle Scholar
  8. Blanchard, D. C., Griebel, G., and Blanchard, R. J. 2003a. The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. Eur. J. Pharmacol. 463:97–116.PubMedCrossRefGoogle Scholar
  9. Blanchard, D. C., Markham, C., Yang, M., Hubbard, D., Madarang, E., and Blanchard, R. J. 2003b. Failure to produce conditioning with low-dose trimethylthiazoline or cat feces as unconditioned stimuli. Behav. Neurosci. 117:360–368.PubMedCrossRefGoogle Scholar
  10. Burwash, M. D., Tobin, M. E., Woolhouse, A. D., and Sullivan, T. P. 1998. Laboratory evaluation of predator odors for eliciting an avoidance response in roof rats (Rattus rattus). J. Chem. Ecol. 24:49–65.CrossRefGoogle Scholar
  11. Campbell, T., Lin, S., Devries, C., and Lambert, K. 2003. Coping strategies in male and female rats exposed to multiple stressors. Physiol. Behav. 78:495–504.PubMedCrossRefGoogle Scholar
  12. Carobrez, A. P., Teixeira, K. V., and Graeff, F. G. 2001. Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neurosci. Biobehav. Rev. 25:697–709.PubMedCrossRefGoogle Scholar
  13. Dickman, C. R. 1992. Predation and habitat shift in the house mouse, Mus domesticus. Ecology 73:313–322.CrossRefGoogle Scholar
  14. Dickman, C. R. and Doncaster, C. P. 1984. Responses of small mammals to red fox (Vulpes vulpes) odour. J. Zool. 204:521–531.CrossRefGoogle Scholar
  15. Dielenberg, R. A. and McGregor, I. S. 2001. Defensive behavior in rats towards predatory odors: A review. Neurosci. Biobehav. Rev. 25:597–609.PubMedCrossRefGoogle Scholar
  16. Edut, S. and Eilam, D. 2003. Rodents in open space adjust their behavioral response to the different risk levels during barn-owl attack. BMC Ecol. 3:10–22.PubMedCrossRefGoogle Scholar
  17. Eilam, D., Dayan, T., Ben-Eliyahu, S., Schulman, I. I., Shefer, G., and Hendrie, C. A. 1999. Differential behavioural and hormonal responses of voles and spiny mice to owl calls. Anim. Behav. 58:1085–1093.PubMedCrossRefGoogle Scholar
  18. Epple, G., Mason, J. R., Nolte, D. L., and Campbell, D. L. 1993. Effects of predator odors on feeding in the mountain beaver (Aplodontia rufa). J. Mammol. 74:715–722.CrossRefGoogle Scholar
  19. Farmer-Dougan, V., Chandrashekar, S., Stutzman, D., Bradham, K., and Dougan, J. D. 2005. Fox urine as an aversive stimulus: Modification of a passive avoidance task. J. Gen. Psychol. 132:313–320.Google Scholar
  20. Fendt, M. and Fanselow, M. S. 1999. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23:743–760.PubMedCrossRefGoogle Scholar
  21. Fendt, M., Endres, T., Lowry, C. A., Apfelbach, R., and McGregor, I. S. 2005. TMT-induced autonomic and behavioral changes and the neural basis of its processing. Neurosci. Biobehav. Rev. 29:1145–1156.Google Scholar
  22. Gese, E. M. and Ruff, R. L. 1997. Scent-marking by coyotes, Canis latrans: The influence of social and ecological factors. Anim Behav. 54:1155–1166.PubMedCrossRefGoogle Scholar
  23. Glowacinski, Z. and Profus, P. 1997. Potential impact of wolves Canis lupus on prey populations in eastern Poland. Biol. Cons. 80:99–106.CrossRefGoogle Scholar
  24. Goldyn, B., Hromada, M., Surmacki, A., and Tryjanowski, P. 2003. Habitat use and diet of the red fox Vulpes vulpes in an agricultural landscape in Poland. Z. Jagdwiss. 49:191–200.CrossRefGoogle Scholar
  25. Hendrie, C. A. 1991. The calls of murine predators activate endogenous analgesia mechanisms in laboratory mice. Physiol. Behav. 49:569–573.PubMedCrossRefGoogle Scholar
  26. Hendrie, C. A., Weiss, C., and Eilam, D. 1996. Exploration and predation models of anxiety: Evidence from laboratory and wild species. Pharmacol. Biochem. Behav. 54:13–20.PubMedCrossRefGoogle Scholar
  27. Hirsch, S. M. and Bolles, R. C. 1980. On the ability of prey to recognize predators. Z. Tierpsychol. 54:71–84.Google Scholar
  28. Kats, L. B. and Dill, L. M. 1998. The scent of death: Chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394.Google Scholar
  29. Labra, A. and Niemeyer, H. M. 2004. Variability in the assessment of snake predation risk by Liolaemus lizards. Ethology 110:649–662.CrossRefGoogle Scholar
  30. Markham, C. M., Blanchard, D. C., Canteras, N. S., Cuyno, C. D., and Blanchard, R. J. 2004. Modulation of predatory odor processing following lesions to the dorsal premammillary nucleus. Neurosci. Lett. 372:22–26.PubMedCrossRefGoogle Scholar
  31. McGregor, I. S., Schrama, L., Ambernoon, P., and Dielenberg, R. A. 2002. Not all ‘predator odours’ are equal: Cat odour but not 2,4,5 trimethylthiazoline (TMT; fox odour) elicits specific defensive behaviours in rats. Behav. Brain Res. 129:1–16.PubMedCrossRefGoogle Scholar
  32. McNaughton, N. and Corr, P. J. 2004. A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 28:285–305.PubMedCrossRefGoogle Scholar
  33. Misslin, R. 2003. The defense system of fear: Behavior and neurocircuitry. Neurophysiol. Clin. 33:55–66.PubMedCrossRefGoogle Scholar
  34. Nolte, D. L., Mason, J. R., Epple, G., Aronov, E., and Campbell, D. L. 1994. Why are predator urines aversive to prey? J. Chem. Ecol. 20:1505–1516.CrossRefGoogle Scholar
  35. Rosell, F. 2001. Effectiveness of predator odors as grey squirrel repellents. Can. J. Zool. 79:1719–1723.CrossRefGoogle Scholar
  36. Stapley, J. 2003. Differential avoidance of snake odours by a lizard: Evidence for prioritized avoidance based on risk. Ethology 109:785–796.CrossRefGoogle Scholar
  37. Sullivan, T. P., Nordstrom, L., and Sullivan, D. S. 1985a. Use of predator odors as repellents to reduce feeding damage by herbivores. I. Showshoe hares (Lepus americanus). J. Chem. Ecol. 11:903–911.CrossRefGoogle Scholar
  38. Sullivan, T. P., Nordstrom, L., and Sullivan, D. S. 1985b. Use of predator odors as repellents to reduce feeding damage by herbivores. II. Black-tailed deer (Odocoileus hemionus columbianus). J. Chem. Ecol. 11:921–935.CrossRefGoogle Scholar
  39. Sullivan, T. P., Crump, D., and Sullivan, D. S. 1988. Use of predator odors as repellents to reduce feeding damage by herbivores. III. Montane and meadow voles (Microtus montanus and Microtus pennsylvannicus). J. Chem. Ecol. 14:363–378.CrossRefGoogle Scholar
  40. Sullivan, G. M., Apergis, J., Bush, D. E., Johnson, L. R., Hou, M., and Ledoux, J. E. 2004. Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128:7–14.PubMedCrossRefGoogle Scholar
  41. Swihart, R. K., Pignatello, J. J., and Mattina, M. J. I. 1999. Adverse responses of white-tailed deer, Odocoileus virginianus, to predator urines. J. Chem. Ecol. 17:767–777.CrossRefGoogle Scholar
  42. Takahashi, L. K., Nakashima, B. R., Hong, H., and Watanabe, K. 2005. The smell of danger: A behavioral and neural analysis of predator odor-induced fear. Neurosci. Biobehav. Rev. 29:1157–1167.PubMedCrossRefGoogle Scholar
  43. Wiltgen, B. J. and Fanselow, M. S. 2003. A model of hippocampal–cortical–amygdala interactions based on contextual fear conditioning, pp. 83–103, in K. J. Jeffries (ed.) The Neurobiology of Spatial Behavior. Oxford University Press, Oxford.Google Scholar
  44. Yamada, K. and Nabeshima, T. 1995. Stress-induced behavioral responses and multiple opioid systems in the brain. Behav. Brain Res. 67:133–145.PubMedCrossRefGoogle Scholar
  45. Zar, J. H. 1999. Biostatistical Analysis. Prentice-Hall, Upper Saddle River, NJ.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Tierphysiologie, Zoologisches Institut, Fakultät für BiologieUniversität TübingenTübingenGermany
  2. 2.Novartis Institutes for Biomedical Research, Neuroscience ResearchBaselSwitzerland

Personalised recommendations