Volatile Foraging Kairomones in the Littoral Zone: Attraction of an Herbivorous Freshwater Gastropod to Algal Odors

Abstract

Volatile organic compounds (VOCs) produced by algae and cyanobacteria are primarily responsible for odors in fresh waters. Among other functions, VOCs may serve as important infochemicals in biofilms of benthic primary producers. VOCs liberated by benthic, mat-forming cyanobacteria can be used as habitat-finding cues by insects, nematodes, and possibly other organisms. We developed a new gastropod behavioral assay that allows detection of food preference without offering food, thus allowing the distinction between taste, which requires direct contact with the food source, and the detection of odorous infochemicals, which work over distance. We demonstrated that VOCs released from disintegrated cells of a benthic, mat-forming, green alga (Ulothrix fimbriata) are food-finding cues (“foraging kairomones”) that attract the herbivorous freshwater snail Radix ovata. A mixture of three C5 lipoxygenase compounds and 2(E),4(E)-heptadienal that mimic the major VOCs released by U. fimbriata attracted the snails, whereas neither the mixture of C5 compounds nor 2(E),4(E)-heptadienal were effective when given alone. This study suggests that VOCs can play a steering role as infochemicals in freshwater benthic habitats, as has been established for many organismic interactions in terrestrial ecosystems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Batten, J. H., Stutte, G. W., and Wheeler, R. M. 1995. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers. Phytochemistry 39:1351–1357.

    PubMed  Article  CAS  Google Scholar 

  2. Blackburn, N., Fenchel, T., and Mitchell, J. 1998. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256.

    PubMed  Article  CAS  Google Scholar 

  3. Brendelberger, H. 1995. Dietary preference of three freshwater gastropods for eight natural foods of different energetic content. Malacologia 36:147–153.

    Google Scholar 

  4. Brendelberger, H. 1997. Determination of digestive enzyme kinetics: a new method to define trophic niches in freshwater snails. Oecologia 109:34–40.

    Article  Google Scholar 

  5. Calow, P. 1970. Studies on the natural diet of Lymnaea pereger obtusa (Kobelt) and its possible ecological implications. Proc. Malac. Soc. Lond. 39:203–215.

    Google Scholar 

  6. Calow, P. and Calow, L. J. 1975. Cellulase activity and niche separation in freshwater gastropods. Nature 255:478–480.

    PubMed  Article  CAS  Google Scholar 

  7. Cattaneo, A. 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206:1–10.

    Article  Google Scholar 

  8. Croft, K. P. C., Jüttner, F., and Slusarenko, A. J. 1993. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L) leaves inoculated with Pseudomonas syringae Pv-phaseolicola. Plant Physiol. 101:13–24.

    PubMed  CAS  Google Scholar 

  9. Croll, R. P. 1983. Gastropod chemoreception. Biol. Rev. 58:293–319.

    Article  Google Scholar 

  10. Croll, R. P. and Chase, R. 1980. Plasticity of olfactory orientation to foods in the snail Achatina fulica. J. Comp. Physiol. 136:267–277.

    Article  Google Scholar 

  11. Denny, M. 1980. Locomotion: The cost of gastropod crawling. Science 208:1288–1290.

    PubMed  Article  CAS  Google Scholar 

  12. Durrer, M., Zimmermann, U., and Jüttner, F. 1999. Dissolved and particle-bound geosmin in a mesotrophic lake (Lake Zürich): Spatial and seasonal distribution and the effect of grazers. Water Res. 33:3628–3636.

    Article  CAS  Google Scholar 

  13. Evans, W. G. 1982. Oscillatoria sp. (Cyanophyta) mat metabolites implicated in habitat selection in Bembidion obtusidens (Coleoptera: Carabidae). J. Chem. Ecol. 8:671–678.

    Article  CAS  Google Scholar 

  14. Fratini, S., Cannicci, S., and Vannini, M. 2001. Feeding clusters and olfaction in the mangrove snail Terebralia palustris (Linnaeus) (Potamididae: Gastropoda). J. Exp. Mar. Biol. Ecol. 261:173–183.

    PubMed  Article  Google Scholar 

  15. Gal, J., Bobkova, M. V., Zhukov, V. V., Shepeleva, I. P., and Meyer-Ruchow, V. B. 2004. Fixed focal-length optics in pulmonate snails (Mollusca, Gastropoda): Squaring phylogenetic background and ecophysiological needs (II). Inv. Biol. 123:116–127.

    Article  Google Scholar 

  16. Gardner, H. W. 1991. Recent investigations into the lipoxygenase pathway of plants. Biochim. Biophys. Acta 1084:221–239.

    PubMed  CAS  Google Scholar 

  17. Guillard, R. R. L. and Lorenzen, C. J. 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8:10–14.

    CAS  Google Scholar 

  18. Halitschke, R., Ziegler, J., Keinänen, M., and Baldwin, I. T. 2004. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signalling crosstalk in Nicotiana attenuata. Plant J. 40:35–46.

    PubMed  Article  CAS  Google Scholar 

  19. Harborne, J. B. 1995. Ökologische Biochemie. Eine Einführung. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  20. Höckelmann, C. and Jüttner, F. 2004. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Sci. Technol. 49:47–54.

    PubMed  Google Scholar 

  21. Höckelmann, C., Moens, T., and Jüttner, F. 2004. Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes. Limnol. Oceanogr. 49:1809–1819.

    Article  Google Scholar 

  22. Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert, G., Wichard, T., Colucci-D'Amato, L., Terrazzano, G., and Smetacek, V. 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407.

    PubMed  Article  CAS  Google Scholar 

  23. ITIS 2004. Integrated Taxonomic Information System. http://www.cbif.gc.ca/itis.

  24. Izaguirre, G. and Taylor, W. D. 1995. Geosmin and 2-methylisoborneol production in a major aqueduct system. Water Sci. Technol. 31:41–48.

    Article  CAS  Google Scholar 

  25. John, D. M. 2002. Orders Chaetophorales, Klebshormidiales, Microsporales, Ulotrichales, pp. 714, in D. M. John, B. A. Whitton, and A. J. Brook (eds.). The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  26. Jüttner, F. 1987. Volatile organic substances, pp. 453–469, in P. Fay C. and Van Baalen (eds.). The Cyanobacteria. Elsevier, Amsterdam.

    Google Scholar 

  27. Jüttner, F. 1988a. Biochemistry of biogenic off-flavour compounds in surface waters. Water Sci. Technol. 20:107–116.

    Google Scholar 

  28. Jüttner, F. 1988b. Quantitative trace analysis of volatile organic compounds. Methods Enzymol. 167:609–616.

    Article  Google Scholar 

  29. Jüttner, F. 1995. Physiology and biochemistry of odorous compounds from fresh-water cyanobacteria and algae. Water Sci. Technol. 31:69–78.

    Article  Google Scholar 

  30. Jüttner, F. 2001. Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J. Phycol. 37:744–755.

    Article  Google Scholar 

  31. Jüttner, F. 2005. Evidence that polyunsaturated aldehydes of diatoms are repellents for pelagic crustacean grazers. Aquat. Ecol. 39:271–282.

    Article  CAS  Google Scholar 

  32. Jüttner, F. and Dürst, U. 1997. High lipoxygenase activities in epilithic biofilms of diatoms. Arch. Hydrobiol. 138:451–463.

    Google Scholar 

  33. Jüttner, F., Leonhardt, J., and Möhren, S. 1983. Environmental factors affecting the formation of mesityloxide, dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrica. J. Gen. Microbiol. 129:407–412.

    Google Scholar 

  34. Kessler, A. and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    PubMed  Article  CAS  Google Scholar 

  35. Klumpp, D. W., Salita-Espinosa, J. S., and Fortes, M. D. 1992. The role of ephiphytic periphyton and macroinvertebrate grazing in the trophic flux of a tropical seagrass community. Aquat. Bot. 43:327–349.

    Article  Google Scholar 

  36. Lamberti, G. A., Gregory, S. V., Ashkenas, L. R., Li, J. L., Steinman, A. D., and McIntire, C. D. 1995. Influence of grazer type and abundance on plant-herbivore interactions in streams. Hydrobiologia. 306:179–188.

    Article  Google Scholar 

  37. Lodge, D. M. 1986. Selective grazing on periphyton: a determinant of freshwater gastropod microdistributions. Freshw. Biol. 16:831–841.

    Article  Google Scholar 

  38. Madsen, H. 1992. Food selection by freshwater snails in the gezira irrigation canals sudan. Hydrobiologia 228:203–217.

    Google Scholar 

  39. Metcalf, R. L. 1987. Plant volatiles as insect attractants. CRC Crit. Rev. Plant Sci. 5:251–301.

    CAS  Article  Google Scholar 

  40. Miralto, A., Barone, G., Romano, G., Poulet, S. A., Ianora, A., Russo, G. L., Buttino, I., Mazzarella, G., Laabir, M., Cabrini, M., and Glacobbe, M. G. 1999. The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.

    Article  CAS  Google Scholar 

  41. Müller, D. G., Jaenicke, L., Donike, M., and Akintobi, T. 1971. Sex attractant in a brown alga—chemical structure. Science 171:815.

    PubMed  Article  Google Scholar 

  42. Pinckney, J. L. and Zingmark, R. G. 1993. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems. J. Phycol. 29:396–407.

    Article  Google Scholar 

  43. Pohnert, G. 2000. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. 39:4352–4354.

    Article  CAS  Google Scholar 

  44. Pohnert, G. 2002. Phospholipase A2 activity triggers the wound-activated chemical defense in the diatom Thalassiosira rotula. Plant Physiol. 129:103–111.

    PubMed  Article  CAS  Google Scholar 

  45. Pohnert, G. and Boland, W. 1996. Biosynthesis of the algal pheromone hormosirene by the freshwater diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082.

    Article  CAS  Google Scholar 

  46. Pohnert, G., Lumineau, O., Cueff, A., Adolph, S., Cordevant, C., Lange, M., and Poulet, S. 2002. Are volatile unsaturated aldehydes from diatoms the main line of chemical defence against copepods? Mar. Ecol. Prog. Ser. 245:33–45.

    Article  CAS  Google Scholar 

  47. Reisser, W. 1993. Viruses and virus-like particles of fresh-water and marine eukaryotic algae—a review. Arch. Protistenkd. 143:257–265.

    Google Scholar 

  48. Ruther, J., Meiners, T., and Steidle, J. L. M. 2002. Rich in phenomena—lacking in terms. A classification of kairomones. Chemoecology 12:161–167.

    Article  Google Scholar 

  49. Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., and Klee, H. J. 2004. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J. 40:882–892.

    PubMed  Article  CAS  Google Scholar 

  50. Steinman, A. D., Mulholland, P. J., and Beauchamp, J. J. 1995. Effects of biomass, light, and grazing on phosphorus cycling in stream periphyton communities. J. N. Am. Benthol. Soc. 14:371–381.

    Article  Google Scholar 

  51. Stevenson, R. J., Bothwell, M. L., and Lowe, R. L. 1996. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego.

    Google Scholar 

  52. Streit, B. 1981. Food searching and exploitation by a primary consumer (Ancylus fluviatilis) in a stochastic environment—nonrandom movement patterns. Rev. Suisse Zool. 88:887.

    Google Scholar 

  53. Teyke, T. 1995. Food attraction conditioning in the snail Helix pomatia. J. Comp. Physiol. A. 177:409–414.

    Article  Google Scholar 

  54. Thomas, J. D. 1986. The chemical ecology of Biomphalaria glabrata (Say): Sugars as attractants and arrestants. Comp. Biochem. Physiol. A 83:457–460.

    Article  Google Scholar 

  55. Thomas, J. D., Cowley, C., and Ofosu-Barko, J. 1980. Behavioural responses to amino acids and related compounds, including propionic acid, by adult Biomphalaria glabrata (Say), the snail host of Schistosoma mansoni. Comp. Biochem. Physiol. C. 66:17–27.

    Article  Google Scholar 

  56. Thomas, J. D., Ofosu-Barko, J., and Patience, R. L. 1983. Behavioural responses to carboxylic and amino acids by Biomphalaria glabrata (Say), the snail host of Schistosoma mansoni (Sambon), and other freshwater molluscs. Comp. Biochem. Physiol. C. 75:57–76.

    Article  Google Scholar 

  57. Thomas, J. D., Sterry, P. R., Jones, H., Gubala, M., and Grealy, B. M. 1986. The chemical ecology of Biomphalaria glabrata (Say): Sugars as phagostimulants. Comp. Biochem. Physiol. A. 83:461–475.

    Article  Google Scholar 

  58. Thomas, J. D., Kowalczyk, C., and Somasundaram, B. 1989. The biochemical ecology of Biomphalaria glabrata, a snail host of Schistosoma mansoni: Short chain carboxylic and amino acids as phagostimulants. Comp. Biochem. Physiol. A. 93:899–911.

    PubMed  Article  CAS  Google Scholar 

  59. Turner, A. M., Bernot, R. J., and Boes, C. M. 2000. Chemical cues modify species interactions: the ecological consequences of predator avoidance by freshwater snails. Oikos 88:148–158.

    Article  CAS  Google Scholar 

  60. Van Donk, E. 1989. The role of fungal parasites in phytoplankton succession, pp. 171–194, in U. Sommer (ed.). Plankton Ecology. Springer, Berlin.

    Google Scholar 

  61. von Elert, E. and Loose, C. J. 1996. Predator-induced diel vertical migration in Daphnia: enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22:885–895.

    Article  CAS  Google Scholar 

  62. Wakefield, R. L. and Murray, S. N. 1998. Factors influencing food choice by the seaweed-eating marine snail Norrisia norrisi (Trochidae). Mar. Biol. 130:631–642.

    Article  Google Scholar 

  63. Watson, S. B. 2003. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350.

    Article  Google Scholar 

  64. Watson, S. B. and Ridal, J. 2004. Periphyton: a primary source of widespread and severe taste and odour. Water Sci. Technol. 49:33–39.

    PubMed  CAS  Google Scholar 

  65. Wedemeyer, H. and Schild, D. 1995. Chemosensitivity of the osphradium of the pond snail Lymnaea stagnalis. J. Exp. Biol. 198:1743–1754.

    PubMed  Google Scholar 

  66. Wendel, T. and Jüttner, F. 1996. Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochemistry 41:1445–1449.

    Article  CAS  Google Scholar 

  67. Wisenden, B. D. 2000. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. Lond. B 355:1205–1208.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank P. Merkel and E. Loher for technical assistance with the VOC analyses and S. Boekhoff, B. Kumpfmüller, and T. Basen for assistance with the food choice assays. W. Nagl gave advice on the statistical analyses, and L. Peters helped with the figure of the experimental containers. We are indebted to M. Wolf for manufacturing the experimental containers and to K. Brune for language correction. This study was supported by the Deutsche Forschungsgemeinschaft within the Collaborative Research Centre SFB 454—“Littoral of Lake Constance.”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick Fink.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fink, P., von Elert, E. & Jüttner, F. Volatile Foraging Kairomones in the Littoral Zone: Attraction of an Herbivorous Freshwater Gastropod to Algal Odors. J Chem Ecol 32, 1867–1881 (2006). https://doi.org/10.1007/s10886-006-9115-y

Download citation

Keywords

  • Attractant
  • Food choice
  • Infochemicals
  • Lipoxygenase products
  • Nor-carotenoids
  • Oxylipins
  • Radix ovata
  • Unsaturated aldehydes
  • Ulothrix fimbriata
  • Volatile organic compounds (VOC)
  • Pulmonate
  • Snail