Journal of Chemical Ecology

, Volume 32, Issue 8, pp 1855–1860 | Cite as

Postpollination Changes in Floral Odor in Silene latifolia: Adaptive Mechanisms for Seed-Predator Avoidance?

  • Joëlle K. Muhlemann
  • Marc O. Waelti
  • Alex Widmer
  • Florian P. Schiestl
Rapid Communication

Abstract

Floral odor is a key trait for pollinator attraction in many plants, but may also direct antagonists like herbivores to flowers. In this study, we examined how floral scent changes after pollination in Silene latifolia, which has a specialized relationship with the seed predator Hadena bicruris. We found an overall decrease in total scent emission and considerable changes in relative amounts of scent compounds after pollination. Lilac aldehydes A and B as well as veratrole contributed most to the decrease in scent emission. These three compounds are known to be key signals for the attraction of H. bicruris to the flowers. A specific downregulation of these compounds may increase the reproductive success of the plant by reducing seed predation after pollination.

Key words

Silene latifolia Floral scent Postpollination Lilac aldehydes Veratrole Seed predation 

References

  1. Bopp, S. and Gottsberger, G. 2004. Importance of Silene latifolia ssp. alba and S. dioica (Caryophyllaceae) as host plants of the parasitic pollinator Hadena bicruris (Lepidoptera, Noctuidae). Oikos 105:221–228.CrossRefGoogle Scholar
  2. Dötterl, S. Jürgens, A. Seifert, K. Laube, T. Weissbecke, B., and Schütz, S. 2006. Nursery pollination by a moth in Silene latifolia: the role of odours in eliciting antennal and behavioural responses. New Phytol. 169:707–718.PubMedCrossRefGoogle Scholar
  3. Dötterl, S., Wolfe, L. M., and Jürgens, A. 2005. Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213.PubMedCrossRefGoogle Scholar
  4. Dudareva, N., Murfitt, L. M., Mann, C. J., Gorenstein, N., Kolosova, N., Kish, C. M., Bonham, C., and Wood, K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961.PubMedCrossRefGoogle Scholar
  5. Negre, F., Kish, C. M., Boatright, J., Underwood, B., Shibuya, K., Wagner, C., Clark, D. G., and Dudareva, N. 2003. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15:2992–3006.PubMedCrossRefGoogle Scholar
  6. Schiestl, F. P. and Ayasse, M. 2001. Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia 126:531–534.CrossRefGoogle Scholar
  7. Schiestl, F. P., Ayasse, M., Paulus, H. F., Erdmann, D., and Fancke, W. 1997. Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. sphegodes. J. Chem. Ecol. 23:2881–2895.CrossRefGoogle Scholar
  8. Teis, N. and Raguso, R. A. 2005. The effect of pollination on floral fragrance in thistles. J. Chem. Ecol. 31:2581–2600.PubMedCrossRefGoogle Scholar
  9. Tollsten, L. 1993. A multivariate approach to postpollination changes in the floral scent of Platanthera bifolia (Orchidaceae). Nord. J. Bot. 13:495–499.CrossRefGoogle Scholar
  10. Tllsten, L. and Bergström, J. 1989. Variation and post-pollination changes in floral odors released by Platanthera bifolia (Orchidaceae). Nord. J. Bot. 9:359–362.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Joëlle K. Muhlemann
    • 1
  • Marc O. Waelti
    • 1
  • Alex Widmer
    • 1
  • Florian P. Schiestl
    • 1
  1. 1.Plant Ecological GeneticsInstitute of Integrative Biology, ETH ZurichZurichSwitzerland

Personalised recommendations