Skip to main content
Log in

Ethanol and Methanol as Possible Odor Cues for Egyptian Fruit Bats (Rousettus aegyptiacus)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Frugivorous bats from the Old and New World use odor cues to locate and assess fruit condition. We hypothesized that Egyptian fruit bats (Rousettus aegyptiacus) use as odor cues those volatile compounds that increase in emission rate as fruit ripens. We examined whether the smell of fermentation products may indicate the degree of ripeness to fruit bats. We analyzed volatile compounds in the headspace (the gas space above a fruit in a closed container) of dates (Phoenix dactylifera) and rusty figs (Ficus rubiginosa), both of which are consumed by fruit bats, to elucidate which compounds originate from fermentative pathways and to determine which change in emission rate during ripening. Ethanol, acetaldehyde, and acetic acid were the only volatile compounds detected as products of fermentation in both fruits. In dates, emission rates of these compounds increased during maturation, whereas in rusty figs, they decreased or remained constant. Methanol, although not a fermentation product, increased in emission rate during ripening in both fruits. We found that R. aegyptiacus was neither attracted nor deterred by the smell of methanol at any of the concentrations used. Although the odor of ethanol emanating from food containing concentrations similar to those found in ripe fruit did not attract the bats, at relatively high concentrations (≥1%), the smell of ethanol deterred them. Thus, ethanol at high concentrations may serve as a signal for bats to avoid overripe, unpalatable fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya, K. K., Roy, A., and Krishna, A. 1998. Relative role of olfactory cues and certain non-olfactory factors in foraging of fruit-eating bats. Behav. Processes 44:59–64.

    Article  Google Scholar 

  • Black, K. A., Eells, J. T., Noker, P. E., Hawtrey, C. A., and Tephly, T. R. 1985. Role of tetrahydrofolate in the species differences in methanol toxicity. Proc. Natl. Acad. Sci. USA 82:3854–3858.

    Article  PubMed  CAS  Google Scholar 

  • Boamfa, E. I., Steeghs, M. M. L., Cristescu, S. M., and Harren, F. J. M. 2004. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics. Int. J. Mass Spectrom. 239:193–201.

    Article  CAS  Google Scholar 

  • Cosse, A. A., Endris, J. J., Millar, J. G., and Baker, T. C. 1994. Identification of volatile compounds from fungus-infected date fruit that stimulate upwind flight in female Ectomyelois ceratoniae. Entomol. Exp. Appl. 72:233–238.

    Article  CAS  Google Scholar 

  • Dominy, N. J. 2004. Fruits, fingers, and fermentation: the sensory cues available to foraging Primates. Integr. Comp. Biol. 44:295–303.

    Article  Google Scholar 

  • Dudley, R. 2000. Evolutionary origins of human alcoholism in primate frugivory. Q. Rev. Biol. 75:3–15.

    Article  PubMed  CAS  Google Scholar 

  • Dudley, R. 2002. Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover? Addiction 97:381–388.

    Article  PubMed  Google Scholar 

  • Dudley, R. 2004. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr. Comp. Biol. 44:315–323.

    Article  CAS  Google Scholar 

  • Fadda, F. and Rossetti, Z. L. 1998. Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog. Neurobiol. 56:385–431.

    Article  PubMed  CAS  Google Scholar 

  • Fleet, G. H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Fleming, T. H., Haithaus, E. R., and Sawyer, W. B. 1977. An experimental analysis of the food location behavior of frugivorous bats. Ecology 58:619–627.

    Article  Google Scholar 

  • Frenkel, C., Peters, J. S., Tieman, D. M., Tiznado, M. E., and Handa, A. K. 1998. Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. J. Biol. Chem. 273:4293–4295.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, A. A. and Parsons, P. A. 1984. Olfactory response and resource utilization in Drosophila: interspecific comparisons. Biol. J. Linn. Soc. 22:43–53.

    Article  Google Scholar 

  • Janzen, D. H. 1977. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111:691–713.

    Article  CAS  Google Scholar 

  • Kalko, E. K. V., Herre, E. A., and Handley, C. O. 1996. Relation of fig fruit characteristics to fruit-eating bats in the New and Old World tropics. J. Biogeogr. 23:565–576.

    Article  Google Scholar 

  • Korine, C., Izhaki, I., and Arad, Z. 1999. Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat's diet and implications for its conservation. Biol. Conserv. 88:301–306.

    Article  Google Scholar 

  • Korine, C. and Kalko, E. K. V. 2005. Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): echolocation call design and olfaction. Behav. Ecol. Sociobiol. 59:12–23.

    Article  Google Scholar 

  • Laska, M. 1990. Olfactory sensitivity to food odor components in the short-tailed fruit bat, Carollia perspicillata (Phyllostomatidae, Chiroptera). J. Comp. Physiol. A 166:395–399.

    Article  Google Scholar 

  • Laska, M. and Schmidt, U. 1986. Olfactory orientation in Carollia perspicillata (Chiroptera). Mamm. Biol. 51:129–138.

    Google Scholar 

  • Laska, M. and Seibt, A. 2002. Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. J. Exp. Biol. 205:1633–1643.

    Google Scholar 

  • Lefever, G., Vieuille, M., Delage, N., D'harlingue, A., De Monteclerc, J., and Bompeix, G. 2004. Characterization of cell wall enzyme activities, pectin composition, and technological criteria of strawberry cultivars (Fragaria × ananassa Duch). J. Food Sci. 69:221–226.

    Google Scholar 

  • Lieber, C. S. 2000. Alcohol: its metabolism and interaction with nutrients. Annu. Rev. Nutr. 20:395–430.

    Article  PubMed  CAS  Google Scholar 

  • Lindinger, W., Hansel, A., and Jordan, A. 1998. On-line monitoring of volatile organic compounds at ppt levels by means of Proton Transfer Reaction Mass Spectrometry (PTR-MS): medical applications, food control and environmental research. Int. J. Mass Spectrom. 173:191–241.

    Article  CAS  Google Scholar 

  • Luft, S., Curio, E., and Tacud, B. 2003. The use of olfaction in the foraging behaviour of the golden-mantled flying fox, Pteropus pumilus, and the greater musky fruit bat, Ptenochirus jagori (Megachiroptera: Pteropodidae). Naturwissenschaften 90:84–87.

    PubMed  CAS  Google Scholar 

  • Makar, A. B. and Tephly, T. R. 1976. Methanol poisoning in the folate-deficient rat. Nature 261:715–716.

    Article  PubMed  CAS  Google Scholar 

  • Mangas, J. J., Cabranes, C., Moreno, J., and Gomis, D. B. 1994. Influence of cider-making technology on cider taste. Lebensm.-Wiss. Technol. 27:583–586.

    Article  CAS  Google Scholar 

  • Nursten, H. E. 1970. Volatile compounds: the aroma of fruits, pp. 239–268, in A. C. Hulme (ed.). The Biochemistry of Fruits and Their Products. Academic Press, London.

    Google Scholar 

  • Rieger, J. F. and Jakob, E. M. 1988. The use of olfaction in food location by frugivorous bats. Biotropica 20:161–164.

    Article  Google Scholar 

  • Rochat, D., Nagnan-Le Meillour, P., Esteban-Duran, J. R., Malosse, C., Perthuis, B., Morin, J. P., and Descoins, C. 2000. Identification of pheromone synergists in American palm weevil, Rhynchophorus palmarum, and attraction of related Dynamis borassi. J. Chem. Ecol. 26:155–187.

    Article  CAS  Google Scholar 

  • Rohan, T. A. 1972. The chemistry of flavor, pp. 57–69, in J. B. Harborne (ed.). Phytochemical Ecology. Proceedings of the Phytochemical Society Symposium No. 8. Academic Press, London.

    Google Scholar 

  • Sánchez, F., Korine, C., Pinshow, B., and Dudley, R. 2004. The possible roles of ethanol in the relationship between plants and frugivores: first experiments with Egyptian fruit bats. Integr. Comp. Biol. 44:290–294.

    Article  Google Scholar 

  • Senesi, E., Di Cesare, L. F., Prinzivalli, C., and Lo Scalzo, R. 2005. Influence of ripening stage on volatiles composition, physicochemical indexes and sensory evaluation in two varieties of muskmelon (Cucumis melo L var reticulates Naud). J. Sci. Agric. 85:1241–1251.

    Article  CAS  Google Scholar 

  • Sharaf, A., Ahmend, F. A., and El-Saadany, S. S. 1989. Biochemical changes in some fruits at different ripening stages. Food Chem. 31:19–28.

    Article  CAS  Google Scholar 

  • Shusterman, D., Osterloh, J. D., Ambre, J., Becker, C., Borak, J., Cannella, J., Kipen, H., Jackson, R. J., Rodnick, J., and Wummer, B. A. 1993. Methanol toxicity. Am. Fam. Physician. 47:163–171.

    PubMed  Google Scholar 

  • Steeghs, M., Bais, H. P., De Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J. M. 2004. Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 135:47–58.

    Article  PubMed  CAS  Google Scholar 

  • Supriyadi, S., Suzuki, M., Wu, S. Q., Tomita, N., Fujita, A., and Watanabe, N. 2003. Biogenesis of volatile methyl esters in snake fruit (Salacca edulis, Reinw) cv. Pondoh. Biosci. Biotechnol. Biochem. 67:1267–1271.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, G. A. 1993. Introduction, pp. 1–51, in G. B. Seymour, J. E. Taylor, and G. A. Tucker (eds.). Biochemistry of Fruit Ripening. Chapman & Hall, London.

    Google Scholar 

  • Utrio, P. and Eriksson, K. 1977. Volatile fermentation products as attractants for Macrolepidoptera. Ann. Zool. Fenn. 14:98–104.

    CAS  Google Scholar 

  • Vidrih, R. and Hribar, J. 1999. Synthesis of higher alcohols during cider processing. Food Chem. 67:287–294.

    Article  CAS  Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

Download references

Acknowledgments

We thank A. Zabari, A. Fennec, and R. Glukhikh for their help capturing and maintaining the bats and to Prigat International Ltd. for contributing mango juice. We also thank two anonymous reviewers for constructive comments. Support by US–Israel Binational Science Foundation grant number 2001038 to C.K., B.P., and R.D., a stipend and a student research grant from the Mitrani Department of Desert Ecology (MDDE) to F.S., and a grant from the European Community, Access to Research Infrastructure–Improving Human Potential Programme to F.S. are gratefully acknowledged. This is paper number 571 of the MDDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, F., Korine, C., Steeghs, M. et al. Ethanol and Methanol as Possible Odor Cues for Egyptian Fruit Bats (Rousettus aegyptiacus). J Chem Ecol 32, 1289–1300 (2006). https://doi.org/10.1007/s10886-006-9085-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9085-0

Keywords

Navigation